
Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 1

Departamento de Ingeniería de Sistemas y Automática

Universitat Politècnica de València

Simulation in robotics
with VirtualRobot.

Introduction to VRM

Martin Mellado Arteche

September, 2012

This document is licensed according to the Creative Commons license

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.es

DISA UPV ETSInf

2 Introduction to the graphical modelling system for robotics VRM

Contents

INTRODUCTION TO THE GRAPHICAL MODELLING
SYSTEM FOR ROBOTICS VRM 3

1. INTRODUCTION 3
2. VRM APPLICATIONS 3
3. OBJECT MODELLING WITH VRM EDITOR 3

4. MODELLING ENVIRONMENTS WITH OBJECTS 7
5. MODELLING PARTS AND ENVIRONMENTS WITH PARTS 8

6. OPERATION ON PARTS IN VRS 9
7. PRACTICAL EXERCISES 10

A. PRIMITIVE DEFINITION 12
B. FILE FORMATS 13

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 3

Introduction to the graphical

modelling system for robotics
VRM

1. Introduction

The aim of this document is to present a tutorial to introduce the use of a modelling system for
robot objects, parts and environments called Virtual Robot Modeller (VRM) and its use within
VirtualRobot Simulator (VRS). VRM is a set of external graphical modelling programs or
applications aimed at robotics applications for their use in VRS. VRM is installed on installing
VRS. The early part of the tutorial demonstrates how to use such programs by means of a
series of tasks to be carried out. Later on it is shown how the results may be used in VRS. It is
assumed that the user is familiar with the VRS program and is able to run applications in such
environment.

2. VRM applications

In VRS and environment may be a loaded to make the simulation more realistic. The
environments comprise objects and parts. The difference between objects and part is that whilst
objects are merely "decorative" elements, that is, only graphical information to improve the
visual aspect of a simulation, parts contain more information. In particular, they have associated
with them coordinate systems used for the robots to act on them, both by means of relative
movement and for grasping parts.

VRM applications are used to create and edit objects and parts and to build environments with
them. VRM consists, mainly, of the following three applications VRM Tools (which can be run
from the File>>VRM Tools option):
 VRM Editor for creating and editing both objects and parts.
 VRM Object Mover locating, deleting and saving objects in an environment loaded in VRS.
 VRM Part Mover for locating, deleting and saving parts in an environment loaded in VRS.

Using these applications environments may be generated which are later saved with the
corresponding VRS Loader option.

3. Object modelling with VRM Editor

For object modelling in VRS the VRM Tool called VRM Editor is available. VRM Editor is an
external application which is used for modelling objects for creating environments. As an
external program, its executable file VRMEditor.exe may be run directly from the operating
system, located in the Applications\VRMTools folder from the VRS directory The default
configuration installation of VRS is accessible via the File>>VRM Tools>>VRM Editor menu
option. Once run, it is a program like any other, with access via the task bar. If VRM Editor is
running it will re-open in the event of it being launched again.

DISA UPV ETSInf

4 Introduction to the graphical modelling system for robotics VRM

Its interface is the one shown on the right, having, like all VRM
Tool type applications, its own pop-up menu, accessible on
clicking on the window (outside of the buttons) with the right
mouse button, enabling, if the Always Visible option is
selected (as appears by default), this application to be always
visible on top of any other window, including the VRS one. The
interface comprises four parts: a list of primitives, editing
buttons, primitive creating buttons and file buttons.

Creating primitives

The VRM Editor modeller enables objects to be created such as the joining of graphical
primitives. These primitives are created with the corresponding graphic buttons, one for each
type of primitive giving a total of 20 buttons. The available graphic primitives and their icons are
the following:

P
O

IN
T

L
IN

E

D
IS

K

T
R

IA
N

G
L
E

3
D

F
A

C
E

B
O

X

P
Y

R
A

M
ID

T
R

IA
N

G
U

L
A

R
_

P
Y

R
A

M
ID

T
E

N
T

W
E

D
G

E

C
O

N
E

T
U

B
E

S
P

H
E

R
E

D
O

M
E

T
O

R
U

S

C
O

N
E

_

S
P

H
E

R
E

C
O

N
E

_
T

W
O

_

S
P

H
E

R
E

S

T
E

N
T

_

C
Y

L
IN

D
E

R

T
E

N
T

_
T

W
O

_

C
Y

L
IN

D
E

R
S

F
R

A
M

E

Each geometric primitive is defined using a series of geometric parameters (dimensions). The
definition of the geometric parameters for each primitive is explained in Appendix A.

To create a primitive the corresponding button is selected. For example, when the Box primitive
icon is selected the following dialogue appears to introduce the data:

Identifier: name of the primitive (this field is not modifiable)

Dimensions (U, V, W): dimensions or geometric parameters. In
the case of the prism they are: Length, Width, Height
Colour: opens a dialogue for selecting the primitive's colour. The
colour selected is represented in the top rectangle
Cancel: cancels the definition of the primitive
OK: Saves and ends the definition of the primitive

Transformations: opens a dialogue enabling the primitive to be located. This dialogue is
explained below
Scaling: opens a dialog enabling the primitive to be scaled (it multiplies all its geometric
parameter scaling factor greater than zero)

In this dialogue the dimensions should be important (optionally, scaling them) and the right
colour selected. Transformations are available to locate the primitives as explained in the next
section.

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 5

Task 3.1:
 Click on the Box icon to define a prism (Do NOT click on the OK button in this task, as it

continues in Task 3.2).
 Try changing its dimensions to see how they fit dynamically.
 Change the colour of the primitive.
 Scale the primitive to twice the size (Scale Factor=2) and half the size (Scale Factor=0.5).

Placing primitives

The Transformations button opens the following dialogue:

Type: defines the type of transformation: Displacement (D) or Rotation (R)
Axis: selects not what axis the transformation will be applied this may be a global axis (X,Y,Z)
or a local one (U,V,W)
Ok: ends the definition of the transformations and returns to the previous dialogue (primitive
creation) saving the transformations made

Cancel: cancel the definition of the transformations and returns
to the previous dialogue (primitive creation) returning the
transformations to the state they were in on opening this
dialogue
Information: shows the homogeneous transformation matrix
Initialize: removes all the transformations from the list
Minimize: minimizes the transformation to six or fewer basic
transformations (RX,RY,RZ,DX,DY,DZ)
Undo: undoes the last basic transformation in the list and
removes it

Value: inputs a displacement value or angle (in degrees)
Apply: applies the basic transformation defined by term (Type,Axis,Value) and adds to the end
of the list
Zero: resets the Value field to zero
<<<, <<, <: subtract 100,10,1 from the value of the Value field
>, >>, >>>: add 1,10,100 respectively to the value of the Value field

The use of this dialogue, which appears somewhat difficult, is easier than what it seems. It
enables the application of displacements and rotations of the object on their main axes U,V,W
(which move together with the object) or the global axes of the “world” X,Y,Z (which remained
static or fixed). For help using this dialogue, the axes of both coordinate systems are drawn
(initially overlapped), using the nomenclature of the three axis with the colours red, green and
blue (RGB), which represent the X,Y,Z or the U,V,W axes respectively of such systems.

Displacement or transformation operations may be carried out on each of these axes. Unless
axes are parallel, the effect of the displacements on one or the other will be different. Likewise,
unless the two axes are coincident, the effect of the rotations will be different.

To help you understand how they work, do the following tasks.

Task 3.2:
 Carry out displacements (Type=D) on axes X,Y,Z (fixed axes) with the value 100 (or any

other) to familiarize yourself with their use. Notice that once the type is defined, the axis and
the basic transformation value must be applied using the Apply button.

 Carry out displacements on axes U,V,W. Notice that the effect is the same (displacing on U
does the same as displacing on X) since the axes remain parallel.

 Test the Information, Undo, Minimize and Initialize options.

Remember that you are using VRS, so you have all the graphical
viewing facilities at your disposal (zoom, scroll, point of view, etc).

Task 3.3:
 Initialize the transformation (Initialize button).

DISA UPV ETSInf

6 Introduction to the graphical modelling system for robotics VRM

 Carry out a 60° angle rotation (Type=R) on the Z axis.
 Carry out displacements on the X and U axes. Deduct the difference between the

displacements in respect of the fixed and local axes.
 Carry out displacements on the Y and V axes. Deduct the difference between the

displacements in respect of the fixed and local axes.

Task 3.4:
 Initialize the transformation (Initialize button).
 Carry out displacements on X, Y, Z.
 Carry out rotations on the U,V,W axes (main axes of the object) choosing the desired angle.
 Carry out rotations on the X,Y,Z axes (fixed axes of the world). Deduct the difference

between the rotations in respect of the fixed and local axes.

As this dialogue is essential for locating the primitives which form
objects, you need to be skilled about how to handle the dialog before
continuing with the next section.

Task 3.5:
 Choose the place of whichever primitive you like.
 Close the transformations dialogue (Ok button).
 Close the definition dialogue of the Box primitive (OK button). From this moment you have a

primitive in the modeller.

Copying, editing and deleting primitives

Already created primitives may be duplicated using the Copy button. You just have to select the
primitive to duplicate from the list of existing primitives and click on the Copy button. The create
dialogue will open for the dimensions, colour or place of the copy to be changed (otherwise both
primitives will overlap each other). In case of cancelling, the copy is lost.

Any primitive input may be edited, that is, any of its dimensions or geometric parameters may
be modified, its colour changed, scaled or its place modified. To do this its name must be
selected from the list of primitives and the Edit button clicked on and the create dialogue of the
primitive to be able to change the dimensions, colour or place of the primitive. On the other
hand, any primitive input may be deleted. To do so its name must be selected from the list of
primitives and the Delete button clicked on. Note that it does NOT ask for confirmation and that
you cannot recover a primitive once it has been deleted. Finally, all primitives created in VRS
may be deleted using the Delete All button which will ask for confirmation before carrying out
the action.

Task 3.6:
 Input several primitive of different types (except Frame) and locate them in space by making

use of the different options.
 Practice the edit, copy and delete options for primitives so as to be used with them.

Saving objects

Once all the primitives that make up an object have been input, it may be saved in a file using
the Save button. After a dialogue for selecting the directory and inputting the name of the file,
the existing primitives are saved in a file with an OBF extension. To keep the file structure
consistent, it is recommended that the file be saved in the Models\User folder (from which the
files may be organized by folder). The object is saved in a file in ASCII format (modifiable
therefore with any text editor). The OBF format is explained in Appendix B.

Task 3.7:
 Freely model a table with dimensions of 120cm x 60cm y 75cm high (remember to use when

modelling the object).
 Save the table in a file (in the Models\User folder).

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 7

Loading and importing the primitives of objects

Primitives saved in object files may be loaded using the Load button. If the primitives created
have not been saved confirmation will be sought, since otherwise they will be lost. On the other
hand, during creation of an object all the primitives of an already created object may be
imported and saved in a file using the Import button which enables the object file to be
selected. All primitives of which the object is made up stored in the file are added to the object
currently being created.

Task 3.8:
 Freely model a couple of simple objects (maximum 4 primitives) and save them in two files.
 Create a new object by importing the table and the previous objects. Notice that once the

objects are imported only their primitives may be accessed and the grouping is lost, so the
object as a whole may not be re-located (this may be resolved with the definition of
environments explained in the next section).

 Delete this new object.

4. Modelling environments with objects

As seen in the previous section, with the aid of VRM Editor primitives for modelling object may
be represented in VRS and stored in files. If you want VRS can represent these objects as
grouped entities, environment files must be created. An environment is the union of objects
(later we shall see that parts may also be included).

To load objects which define environments use of
the find environments option available in VRS

Loader (button) is recommended, this runs the
VRM Visor program. Its interface is the one shown
on the right, having, like all accessible mouse VRM
Tool type applications, its own pop-up menu on
clicking on the window (outside of the buttons) with
the right button, enabling, if the Always Visible
option is selected (as appears by default), this
application to be always visible on top of any other
window, including the VRS one.

With this application you can view and load environment files into VRS by launching the ENF
option and object files by launching the OBF option. It may also be used for parts files by
launching the PAF option. VRM Visor shows on the left the directory tree (top) and the content
of the directory (bottom) and on the right a view of the content of the file in a graphical window.
By double clicking with the mouse on the graphical window you can configure the use of the
mouse in the graphical window. Using the Add to VRS button you can add objects to the
currently available environment in VRS.

Once at least one object is loaded into VRS (otherwise it will not start), you can
run the VRM Object Mover application, accessible using the File>>VRM
Tools>>VRM Object Mover menu option This application enables objects to
be located, deleted and saved in an environment, although its main function is
to change the position and orientation of an already existing object in the
environment and to enable environments to be modelled by proceeding in this
way. Its interface is the one shown on the right, having, like all accessible
mouse VRM Tool type applications, its own pop-up menu on clicking on the
window (outside of the buttons) with the right button, enabling, if the Always
Visible option is selected (as appears by default), this application to be always
visible on top of any other window, including the VRS one.

DISA UPV ETSInf

8 Introduction to the graphical modelling system for robotics VRM

From the Object field the object to be re-located may be selected and using the “<” y “>”

buttons or typing directly the value of position components x,y,z or orientation ones may
be changed. Orientation can be specified in any of the three types of Euler angles and the place
can be represented in respect of the world system or of the environment (initially coincident,
they only vary if this relationship has been modified using Place Environment). The Delete
button is for deleting an object from the environment, the Save button for saving an object in its
current place, the Refresh button for updating the list of objects (required when another
application has loaded new objects) and the Setup button for configuring the “<” y “>” button
increments.

Using these two applications objects can be loaded and placed in VRS in order to create
environments which may be saved using the Save Environment button in VRS Loader. It is
recommended that files be saved in the Models\User folder. Environments are saved in files
with the ENF extension whose format is described in Appendix B. As previously explained,
these files may be loaded into VRS using the Load Environment button in VRS Loader.

Task 4.1:
 Make sure you have an empty environment in VRS.
 Add the table defined in the previous section into VRS.
 Add one of the objects defined in the previous section into the VRS.
 Locate this object so that it is situated on top of the table.
 Add the other object into the VRS and locate it on top of the table too.
 Save the environment in the Models\User folder and delete the environment.

 Load the environment created.

5. Modelling parts and environments with parts

Objects modelled with VRM may be viewed in VRS to get the feeling that the robot is in the
environment being worked in. However, these objects are inert objects, on which a robot cannot
operate. On the contrary, parts may be defined using VRM, which can be operated by robots
(for example handled) in VRS. The difference between objects and parts is that the latter,
besides a set of primitives for defining their geometric shape, have at least one coordinate
system will allow the robot to make movements relative to this coordinate system or pick up the
part using this coordinate system.

To define parts, you work in the VRM Editor the same as for defining objects, with the only
proviso that at least one Frame must be created using the relevant button. Once this type has
been launched, VRM adds a coordinate system for operating the part (operation frame) initially
with transformation identity. The Display Size field as well as the scaling option are only used
for viewing the Frame, not being a definition field of a geometric parameter. To place the Frame
the Primitive Transformations dialogue must be used which can be accessed using the
Transformations button.

Parts are created in its geometric part the same as objects are created, it being possible to
input, edit, copy or delete primitives in the same way. The only requisite is that a primitive
Frame be created. Parts are saved in files with the PAF extension whose format is described in
Appendix B. To create parts object files OBF and/or parts files PAF may be imported. It is
recommended that part files be saved in the Models\User folder.

Parts may be included in environment files which can be viewed in VRS by making use of the
VRM Visor application as explained earlier. The PAF option must be launched to be able to
view existing parts files. Once input, they can be placed using the VRM Part Mover program,
with similar features to the VRM Object Mover, but for placing parts and not objects.

Now environments containing objects and parts can be saved (Save Environment button in
VRS Loader).

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 9

Task 5.1:
 Make sure you have an empty environment in VRS.
 Model a simple part (a pair of primitives and an operating system).
 Save the part in a file in the Models\User folder.

Task 5.2:
 Make sure you have an empty environment in VRS.
 Load the environment created in Task 4.1.
 Add the part created in the previous task into the environment.
 Load the CRS A465.rkf robot into the VRS and place it on top of the table.
 Active the operating system view mode by activating the PARTS field in the

Display>>Frames... menu option

6. Operation on parts in VRS

The definition of the operating systems is essential for programming in VRS the operations of:
 Moving a robot so that the active coordinate system of one of its tools coincides with the

operating system of a part (MoveToPart).
 Moving a robot so that the active coordinate system of one of its tools approximates to the

operating system of a part (ApproxToPart).
 Making a robot tool pick up a part forcing the relationship between active coordinate system

of one of its tools and the operating system of a part to be constant (PickPart).

To define where to put a part's operating system for it to be useful, what type of operation is to
be carried out on the part and where the tool system of the robot which will carry out the
operation needs to be known.

For example, let us suppose that we want to design a part that can be handled by the CRS
A465 robot which has a pneumatic vacuum-type tool (Figure 2). The coordinate system of this
tool is modelled in VRS with its source situated in the centre of its outer face, the X axis pointing
outwards from the vacuum tool and the Z axis vertically upwards in the rest position of the robot.

X

Z

X

Y

Z

Figure 2. Model of the CRS A465 vacuum tool and its ToolFrame.

In order to simulate that the robot with the vacuum tool pick up a part, an operating system has
to be placed on the part as shown in Figure 3a, so that the robot can be instructed to make a
movement to place the vacuum tool coordinate system to coincide with the operating system as
can be seen in Figure 3b, so that the vacuum tool can pick up the part.

DISA UPV ETSInf

10 Introduction to the graphical modelling system for robotics VRM

Z

Z

Y

Y

X

X

Z

Y

X

Figure 3. a) Operating system b) Gripper situation.

If the part is a cylinder located on the floor, the following two transformations will be sufficient:
 90º V rotation to direct the system with the vertical axis X downwards.
 Displace the height of the cylinder along Z to locate the source of the operating system on

the upper side of the cylinder.

Task 6.1:
 Model a part comprising a cylinder which can be handled by the CRS A465 using the

vacuum tool by means of the operating system.
 Save the part to a file.
 Create an environment which has as many objects as you like but with the previous cylinder

as the only part placed with a single transformation which is a displacement of 500mm on
the X axis.

 Save the environment in the Models\User folder.
 Load the CRS A465 Vacuum.rkf robot from the Models\Tutorial folder.

 Using VRS PartHandling, handle the part.

7. Practical exercises

The CRS A465 robot may also have a servo-controlled electromechanical gripper as a tool. The
coordinates system of this tool (Figure 4) is modelled in VRS with its source situated on the
plane on which the fingers touch on closing, protruding 21mm from the base plate of the fingers
and sunk 4mm from the edge of the fingers (25mm long). Orientation is similar to that of the
vacuum tool coordinate system.

X

Z

X

Y
Z

Figure 4. Model of the CRS A465 gripper tool and its ToolFrame.

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 11

The movement of the gripper fingers is modelled by means of 4 states with 51mm openings
between the fingers (open gripper), 33mm (semi-open) 15mm (semi-closed) and 1mm (closed
gripper) as shown in Figure 5.

Figure 5. Models of gripper states of the CRS A465.

Task 7.1:
Model an environment which has two parts for handling by the CRS A465 robot (place the part
in a place reachable by the robot) in the following way:
 The first part must be grasped properly with the gripper in the semi-open state.
 The second part must be grasped properly with the gripper in the semi-closed state.
Handle the parts in VRS using VRS PartHandling.

Task 7.2:
Model an environment which has a part for handling by the CRS A465 robot in the following
way:
 Using the operating system the part must be grasped properly with the gripper in the semi-

open state.
 Using the operating system the part must be grasped properly with the gripper in the semi-

closed state.
Handle the parts in VRS using VRS PartHandling.

DISA UPV ETSInf

12 Introduction to the graphical modelling system for robotics VRM

A. Primitive definition

Geometric primitives and their definition parameters are outlined in the VRPD (VirtualRobot
Primitive Definition) document but a summary graphic of them is provided below by way of help.

Figure A1. Geometrical Primitives and Definition Parameters.

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 13

B. File formats

The format of OBF, PAF and ENF files is outlined in the VRFFD (VirtualRobot File Format
Definition) document and is summarized below (“;” indicate commentary to line end, the
tabulators are not significant).

; OBJECT DESCRIPTION FILE (OBF)
; This file describes an Object as a set of Primitives

[GENERAL] ; General Information
Name = Table ; Object Name
Manufacturer = ; Robot Manufacturer (for robot components)
Model = ; Robot Model (for robot components)
Author = Juan Vte. Catret ; Author
Company = DISA - UPV ; Company
Date = 9/2/99 ; Date

[PRIMITIVE1] ; First Primitive of Object
Type = BOX ; Type of Primitive:

 ; POINT (x, y, z)
 ; LINE (x1, y1, z1, x2, y2, z2)
 ; DISK (Main_Radius>0, Minor_Radius>=0, 0<Angle<=360 [Main_Radius>=Minor_Radius])
 ; TRIANGLE (x1, y1, z1, x2, y2, z2, x3, y3, z3)
 ; 3DFACE (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4, z4)
 ; BOX (Length>0, Width>0, Height>0)

 ; PYRAMID (Length>0, Base_Width>0, Top_Width>=0, Height>0)
 ; TRIANGULAR_PYRAMID (Base_Edge>0, Top_Edge>=0, Height>0)
 ; TENT (Base_Length>0, Base_Width>0, Top_Length>0, Top_Width>=0, Height>0)
 ; WEDGE (Base_Length>0, Width>0, Top_Length>0, Height>0)
 ; CONE (Base_Radius>0, Top_ Radius>=0, Height>0)
 ; TUBE (Main_Radius>0, Minor_Radius>=0, 0<Angle<=360 [Main_Radius>Minor_Radius] , Height>0)
 ; SPHERE (Radius>0)
 ; DOME (Base_Radius>0, Height>0)
 ; TORUS (Main_Radius>0, Minor_Radius>0)
 ; CONE_SPHERE (Base_Radius>=0, Top_Radius>0, Height>0)
 ; CONE_TWO_SPHERES (Base_Radius>0, Top_Radius>0, Height>0)
 ; TENT_CYLINDER (Width>0, Base_Length>=0, Top_Length>0, Height>0)
 ; TENT_TWO_CYLINDERS (Width>0, Base_Length>0, Top_Length>0, Height>0)
 ; VDA_CURVE (No_Segments, ...)
 ; VDA_SURF (No_Patches, ...)
 ; VDA_FILE (FileName, Thickness>0, Curve_Sections>0, Surface_Sections>0)
 ; OBF_FILE (FileName)
 ; For VDA_FILE and OBF_FILE, the file name must include extension and start from VRS Path

RGB = 255,0,0 ; Red-Green-Blue (RGB) components for Colour (0..255,0..255,0..255)
 ; This field can be avoided for OBF_FILE primitive (it has no effect if exists)
Length = 30.00 ; Name and value of parameters according to type of Primitive
Width = 100.00 ; Dimensions on mm (degrees for angles)
Height = 150.00
Transformations = DX>5.000, RZ>90.000 ; Location of Primitive1 related to Object Frame

 ; Defined with as many Basic Transformations as required
 ; Transformations can be: Displacements (D) or Rotations (R)

; The axis is indicated with (X,Y,Z,U,V,W) before the symbol '>'
; Transformations related to Object (X,Y,Z) or Primitive (U,V,W) Frames
; The transformations will be applied in the specified order
; Dimensions expressed on mm or degrees (real numbers)
; Transformations = I must be used for identity (no rotation or translation)

[PRIMITIVE2] ; Second Primitive of Object
..

.. ; As many Primitives as required to define Object (at least one)

DISA UPV ETSInf

14 Introduction to the graphical modelling system for robotics VRM

; PART DESCRIPTION FILE (PAF)
; This file describes a Part as an Object with a Operating Frame defined for Robot Operation

[GENERAL] ; General Information
Name = Screw ; Part Name
Manufacturer = ; Robot Manufacturer (for robot components)
Model = ; Robot Model (for robot components)
Author = David Puig ; Author
Company = DISA - UPV ; Company
Date = 9/2/99 ; Date

[OPERATION1] ; Location of Operation Frame 1 related to Part Frame
 Transformations = I ; Defined with Basic Transformations (related to Part Frame)

[OPERATION2] ; Location of Operation Frame 2 related to Part Frame
 Transformations = I ; Defined with Basic Transformations (related to Part Frame)

.. ; As many Operation Frames as required to define Part

; (at least one)

[PRIMITIVE1] ; Defined as a Primitive in Object Geometric Description File
.. ; Transformations related to Part (X,Y,Z) or Primitive (U,V,W) Frames

[PRIMITIVE2]
..

.. ; As many Primitives as required to define Part (at least one)

Simulation in robotics with VirtualRobot

Introduction to the graphical modelling system for robotics VRM 15

; ENVIRONMENT GEOMETRIC DESCRIPTION FILE (ENF)
; This file describes an Environment as a set of Objects and Parts

[GENERAL] ; General Information
Name = RoboticsLaboratory ; Environment Name
Manufacturer = ; No sense for Environment
Model = ; No sense for Environment
Author = Carlos Correcher ; Author
Company = DISA - UPV ; Company
Date = 9/2/99 ; Date

[OBJECT1]
 Name = Table ; Object Name
 Transformations = I ; Location of Object1 related to Environment Frame
[OBJECT1_PRIMITIVE1] ; Defined as a Primitive in Object Geometric Description File
 .. ; Transformations related to Object (X,Y,Z) or
 ; Primitive (U,V,W) Frames
[OBJECT1_PRIMITIVE2] ; As many Primitives as required to define Object1 (at least 1)
 ..

[OBJECT2]
 ..

.. ; As many Objects as required to define Environment (even none)

[PART1]
 Name = Screw ; Part Name
 Transformations = I ; Location of Part1 related to Environment Frame
[PART1_OPERATION1]
 Transformations = I ; Location of Operation Frame 1 related to Object Frame
[PART1_OPERATION2] ; As many Operation Frames as required to define part (at least 1)
 ..
[PART1_PRIMITIVE1] ; Defined as a Primitive in Object Geometric Description File
 .. ; Transformations related to Part (X,Y,Z) or Primitive (U,V,W) Frames
[PART1_PRIMITIVE2] ; As many Primitives as required to define Part1 (at least 1)
 ..

[PART2]
 ..

.. ; As many Parts as required to define Environment (even none)

