

Robótica
Departamento de Ingeniería de Sistemas y Automática

Universidad Politécnica de Valencia

EUROPEAN COMMISSION. DIRECTORATE GENERAL - JRC
Joint Research Centre – Ispra
Institute for the Protection and the Security of the Citizen (IPSC)

VIRTUAL ROBOT
EXTERNAL ACCESS LIBRARY

(SUMMARY)
October 2012, Version 6.7Sb (VREAL 6.7 Summary)

Developed by robótica
Department of System Engineering and Control (DISA)

Polytechnic University of Valencia (UPV)

Contact
Address

vrs@isa.upv.es
http://robotica.isa.upv.es/virtualrobot

DISA - UPV
Camino de Vera s/n E-46022, Valencia (Spain)

Tf: +34-963.879.575 Fax: +34-963.879.579

Supported by European Commission. Directorate General - JRC
Joint Research Centre - Ispra

Institute for the Protection and the Security of the Citizen (IPSC)

http://robotica.isa.upv.es/
http://www.isa.upv.es/
http://www.upv.es/
mailto:vrs@isa.upv.es
http://robotica.isa.upv.es/virtualrobot
http://www.jrc.org/
http://ipsc.jrc.cec.eu.int/

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 1

Index

INDEX .. 1

1. OBJECTIVE.. 1

2. IMPLEMENTATION .. 1

3. LIBRARY-KERNEL COMMUNICATION .. 1

4. FUNCTION PARAMETERS ... 1

5. CONSTANT DEFINITION ... 2

6. TYPE DEFINITION ... 2

7. ERROR CODES ... 2

8. INITIALIZATION FUNCTIONS ... 3

9. FILE FUNCTIONS .. 3

10. EDIT FUNCTIONS .. 3

11. ROBOT DEFINITION FUNCTIONS .. 4

12. SPEED FUNCTIONS .. 4

13. TOOL FUNCTIONS .. 4

14. ROBOT MOTION FUNCTIONS .. 5

15. ROBOT ATTACHMENT FUNCTIONS ... 6

16. INPUT/OUTPUT FUNCTIONS.. 7

17. ENVIRONMENT FUNCTIONS .. 7

18. ROBOT OPERATION FUNCTIONS ... 7

19. FUNCTIONS FOR AUXILIARY LIST OF FIGURES 8

20. FUNCTIONS FOR DISPLAY .. 8

21. DISTANCE FUNCTIONS .. 8

22. VIDEO FUNCTIONS ... 8

23. COLLISION CHECK FUNCTIONS ... 8

24. VREAL.INI FILE ... 8

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 1

1. Objective
The objective of this document is to explain the main functionalities of a library developed to
provide access to some of the functionality of Virtual Robot Simulator (VRS) from a user
application. The complete functionality is included in VREAL documentation. The library,
called VR External Access Library (VREAL), is implemented as a Dynamic Link Library on the
file “vreal.dll”. The user application can manage, through this library, the elements defined on
VRS.
VREAL can be compiled with a dynamic link on the user application. The “vreal.h” file contains
the definition of the library, while the “vreal.lib” includes the library access specification. Both
files must be used to compile and link the user application, while the “vreal.dll” file must be
accessible for the user application execution.

2. Implementation
The VR External Access Library provides an interface formed by a set of functions whose
objective is to allow the user to interact with the kernel of VRS.
In addition to constant and type definition, there are the following independent sets of functions:

 A set of functions to initialize and close the Library

 A set of functions to manage files

 A set of functions to edit robots and the environment

 A set of functions to define and modify robot parameters

 A set of functions for speed control

 A set of functions for tool handle

 A set of functions for robot motion

 A set of functions for robot attachment

 A set of functions for inputs and outputs

 A set of functions for environment

 A set of functions to handle with robot operation

 A set of functions to handle an auxiliary list of figures

 A set of functions to handle the display options of VRS

 A set of functions for video recording

3. Library-Kernel Communication
The communication between the user application and the kernel of VRS can be made in local
mode or remote mode:

 In local mode, the user application must be run on the same computer than VRS. In
fact, VRS will ask for the name of the user application to be run and will start it. The
user application must initialize VREAL with the function provided for this

(alInitialize) with no parameter at all. Then, the user application has access to all

the functionality of this library.
 In remote mode, the user application can be run on the same computer than VRS or in

any other computer. In both cases, a TCP/IP protocol is used for application
communication. The user must first activate on VRS the VREAL Remote Mode
(File>>Start Remote VREAL Server). Then the user must start his/her application
wherever it is and the user application must initialize VREAL with the function provided

for this (alInitialize) with the appropriate parameter (the name or ip-address of the

PC where VRS is running). Then, the user application has access to all the functionality
of this library.

In any case, THE LIBRARY MUST BE CLOSED before the user application finishes.

4. Function Parameters
Some parameters are used in most of the functions and therefore are explained once in this
section.
For example, three parameters are used as identifier in many functions:

 robotId is the robot identifier. It is returned only by the function alLoadRobot and

used by any function that applies on a robot.

 objectId is the object identifier. It is returned only by the function alGetObjectId

and used by any function that applies on an object.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 2

 partId is the part identifier. It is returned only by the function alGetPartId and used

by any function that applies on a part.

 figureId is the figure identifier. It is returned by any Add function and used by any

function that applies on a figure.
A location is usually represented in a function be means of:

 The position represented with the values x,y,z.

 The orientation represented with the values alpha, beta and gamma. These three

angles are the Euler Angles Type 2 (also called ZYZ).
According to these parameters, a location is computed with the following steps:

1. Rotation of alpha angle related to Z axis
2. Rotation of beta angle related to V axis (Y axis of mobile frame)
3. Rotation of gamma angle related to W axis (Z axis of mobile frame)
4. Translations of x,y,z values related to X, Y, Z axes (axes of fix frame)

There are some options on locations as shown in VREAL documentation.

5. Constant Definition
The following constants are defined:
NUM_DOF NUM_ROBOTS

NUM_TOOLS NUM_OBJECTS NUM_PARTS

RESET SYNCHRO

POINTTOPOINT LINEAR

ABSOLUTE_MOVEMENT RELATIVE_MOVEMENT

ORIGIN TOOL_FRAME WORLD

CHECK_RANGE NO_CHECK_RANGE

CHECK_ORIENTATION NO_CHECK_ORIENTATION

CLOSEST

RIGHT_DOWN RIGHT_UP

LEFT_UP LEFT_DOWN

POSITIVE_WRIST NEGATIVE_WRIST

WIRED SHADED HIDDEN

ENVIRONMENT_LOADED ENVIRONMENT_NOT_LOADED

VISIBLE INVISIBLE

ACTIVE_TRACE NO_ACTIVE_TRACE

HIDE_TRACE NO_HIDE_TRACE

CHECK_COINCIDENCE NO_CHECK_COINCIDENCE

TRANSLATION ROTATION

X_AXIS Y_AXIS Z_AXIS

U_AXIS V_AXIS W_AXIS

EULER_ANGLES_TYPE_1 EULER_ANGLES_TYPE_2 EULER_ANGLES_TYPE_3

NUM_DIGITAL_INPUTS NUM_DIGITAL_OUTPUTS

NUM_ANALOGICAL_INPUTS NUM_ANALOGICAL_OUTPUTS

A color inversion table is shown in VREAL documentation.
Their values are defined in one of the following files:

 “Includes\VReal\VRealExternalDefines.h”.

 “Includes\VRealCommunications\VRealCommunicationsExternalDefines.h”.

 “Includes\VRTransf\VRTransfExternalDefines.h”.

 “Includes\VRMaths\VRMathsExternalDefines.h”.
All these files are included in “Includes\VReal\VReal.h”.

6. Type Definition
In “Includes\GeneralDefines.h”, the following types are defined:
typedef char STRING[256]

typedef unsigned long COLORREF

7. Error Codes
Every function in the library has at least the following possible values to be returned (unless
other case stated):

RET_OK Successful execution

RET_ERROR Error in execution

SEE VREAL documentation

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 3

8. Initialization Functions
There are two functions to initialize and close the library:

 alInitialize

a) For local mode:
int alInitialize()

This function initializes the VREAL library in local mode. It must be called before any
other function of the library is used.
b) For remote mode: SEE VREAL documentation

 alClose

int alClose()

This function closes the VREAL library. It must be called before finishing the user
application in any of the modes (local or remote).

9. File Functions
This set of functions mainly allows to load and close robots and environment.

 alLoadRobot

int alLoadRobot(STRING fileName,int *robotId)

This function loads on VRS a new robot from a rkf file (indicated on fileName) and

gives back the robot identifier on robotID. When a robot with the same name exists,

VRS adds a number (1,2,3,…) to the robot name. The maximum number of robots is

defined by the constant NUM_ROBOTS. The loaded robot becomes the active robot.

 alCloseRobot

int alCloseRobot(int robotId)

This function closes on VRS the robot specified with robotID. If the closed robot is the

active robot, the first robot on the list of robots becomes the active robot.

 alLoadEnvironment

int alLoadEnvironment(STRING fileName)

This function loads an environment (indicated on fileName) on VRS. As only one

environment can be opened on VRS, the new environment will replace any other
possible environment.

 alCloseEnvironment

int alCloseEnvironment()

This function closes the environment on VRS.

 alCloseAll

int alCloseAll()

This function closes all the robots and the environment on VRS.
More functions in VREAL documentation

10. Edit Functions
This set of functions mainly allows placing robots and environment.

 alPlaceRobot

int alPlaceRobot(int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma)

This function places a robot on VRS, that is, specifies where the robot is located in the

space. The location is represented with a position (x,y,z) and a orientation (alpha,

beta and gamma) specified in Euler Angles type 2.

Options: SEE VREAL documentation

 alPlaceEnvironment

int alPlaceEnvironment(double x, double y, double z,

 double alpha, double beta, double gamma)

This function places the environment on VRS, that is, specifies where the environment

is located in the space. The location is represented with a position (x,y,z) and a

orientation (alpha, beta and gamma) specified in Euler Angles type 2.

Options: SEE VREAL documentation
More functions in VREAL documentation

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 4

11. Robot Definition Functions
This set of functions is mainly designed to obtain and modify the robot configuration.

 alSetActiveRobot

int alSetActiveRobot(int robotId)

This function actives an specific robot specified with the parameter. The information of
the active robot is shown on the dynamic information field.

 alGetActiveRobot

int alGetActiveRobot(int *robotId)

This function obtains in its parameter the robot identifier of the active robot.

 alInvertRobotColor

int alInvertRobotColor(int robotId,int invert)

This function inverts the color of the robot specified in the first parameter. The second
parameter can be any of the values indicated in the table of color inversions.

 alGetAvailableRobots

int alGetAvailableRobots(int robotIds[NUM_ROBOTS],

STRING robotNames[NUM_ROBOTS],

int *numberOfRobots)

This function obtains the arrays of identifiers and associated names of the available
robots on VRS, that is, the robots loaded. The number of available robots is returned on
the last parameter.
Parameters:

robotIds is an array with the identifiers of the available robots

robotNames is an array of names of the available robots

numberOfRobots is the number of available robots. If it is equal to 0, there is no robot

available on VRS. It specifies the number of valid values on the arrays.
More functions in VREAL documentation

12. Speed Functions
This set of functions is mainly designed to control speed scale and robot speed.

 alSetRobotSpeed

int alSetRobotSpeed(int robotId, double robotSpeed)

This function sets the speed of the robot given by robotId parameter. The

robotSpeed value must be between 0.0 and 1.0, where 0.0 indicates the slowest

speed and 1.0 the fastest speed. The initial default value is 0.5.
More functions in VREAL documentation

13. Tool Functions
This set of functions is mainly designed to manage the tool.
 alSetActiveToolFrame

int alSetActiveToolFrame(int robotId,int toolFrameId)

This function sets the active ToolFrame. The first parameter indicates the robot whose
ToolFrame must be changed. The second value indicates the number of the ToolFrame
that must be active after the function execution. If the ToolFrame is not defined, the
function returns and the active ToolFrame is not changed.

 alSetActiveTool

int alSetActiveTool(int robotId, int toolId)

This function sets the active Tool. The first parameter indicates the robot whose Tool
must be changed. The second value indicates the number of the Tool that must be
active after the function execution. If the robot does not have this tool, an error is
returned.

 alSetToolStatus

int alSetToolStatus(int robotId,double toolStatus)

This function sets the tool status for the active tool. The first parameter indicates the
robot whose tool must be changed. The second value indicates the tool status of the
active tool of this robot. The value must be in the interval [0.0,1.0], assigning the closest
end value in other case.

More functions in VREAL documentation

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 5

14. Robot Motion Functions
This set of functions is designed to move robots.

 alRobotReset

int alRobotReset(int robotId, int resetType)

This function moves the robot which identifier is equal to the first parameter to its reset
configuration or to its synchronism configuration depending on the value of the second

parameter. The value of this second parameter must be RESET or SYNCHRO.

 alMoveRobotJoints

int alMoveRobotJoints(int robotId,

double joints[NUM_DOF])

This function moves the robot, which identifier is passed as the first parameter of the
function, to the configuration where the values of its joints are the specified in the array
that is passed as the second parameter of the function. A linear interpolation on Joint
Space is generated for the movement.

 alGetRobotLocation

int alGetRobotLocation(int robotId,

 double *x, double *y, double *z,

double *alpha, double *beta, double *gamma)

This function obtains the location of the active ToolFrame of the robot given by the

robotId parameter. ToolFrame location is related to robot Programming Origin frame.

The location is represented with a position (x,y,z) and a orientation (alpha, beta

and gamma) specified in Euler Angles type 2.

Options: SEE VREAL documentation

 alMoveRobot

int alMoveRobot(int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

 int linearMovement, int absoluteMovement,

int frame)

This function moves a robot to a given position.
Parameters:

The parameter robotId is the robot to be moved.

The linearMovement parameter can have two possible values:

POINTTOPOINT For PointToPoint Movement

LINEAR For Linear Movement

When the value of this parameter is POINTTOPOINT, the robot moves from its current

location to the destination location without following any special trajectory. When the

value of this parameter is LINEAR, the robot moves from its current location to the

destination location according to a linear trajectory between the two locations for the
ToolFrame.

The absoluteMovement parameter can have one of these two values:

ABSOLUTE_MOVEMENT For Absolute movement

RELATIVE_MOVEMENT For Relative movement

If the value is ABSOLUTE_MOVEMENT, it means that the x, y, z, alpha, beta,

gamma values represent an absolute movement. Otherwise if the value is

RELATIVE_MOVEMENT the x, y, z, alpha, beta, gamma values represent a

relative movement from the current location.

The frame parameter can have one of these values:

ORIGIN For Origin Frame

TOOL_FRAME For Tool Frame

WORLD For World Frame

If the value is ORIGIN, the Programming Origin Frame is taken as the reference of the

location. If the value of the frame parameter is TOOL_FRAME, the current location of the

active ToolFrame is taken as the reference frame of the movement. If the value of the

frame parameter is WORLD, the World Frame is taken as the reference frame of the

movement. Therefore, the specified location represents the location of the active

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 6

ToolFrame related to the robot programming Origin Frame (for ORIGIN), to the current

location of the active ToolFrame (for TOOL_FRAME) or the world frame (for WORLD).

The location is represented with a position (x,y,z) and a orientation (alpha, beta

and gamma) specified in Euler Angles type 2.

Options: SEE VREAL documentation

 alMove

int alMove(int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

int moveParameter)

This function is the same as the previous one but with the motion parameters in just one
parameter as addition of them, as in the example:
alMove(robotId,x,y,z,a,b,g,LINEAR+RELATIVE_MOVEMENT+WORLD)
POINTTOPOINT, ABSOLUTE_MOVEMENT and ORIGIN are default values and must not

be added. None of the parameters can be added twice. The options are the same than
in previous function.

 alApproxToLocation

int alApproxToLocation(int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

 int linearMovement, int frame,

double xDistance,double yDistance,

double zDistance)

This function approximates the robot indicated in robotId parameter to a location. The

actual ToolFrame of the robot will result with the same orientation with the referred

location but the position will be the same with an offset of xDistance, yDistance,

zDistance values related to the robot origin frame (when frame is ORIGIN) or active

ToolFrame (when frame is TOOL_FRAME) according to the frame parameter (WORLD

cannot be used). The linearMovement parameter has the same meaning that in

alMoveRobot.

The location is represented with a position (x,y,z) and a orientation (alpha, beta

and gamma) specified in Euler Angles type 2 always referred to the robot origin

frame.
Options: SEE VREAL documentation

 alMoveToPart

int alMoveToPart(int robotId, int partId,

 int opFrameId,int linearMovement)

This function moves the robot indicated in robotId parameter to the location of the

opFrameId of the partId parameter, making coincident the actual ToolFrame of the

robot with the referred operation frame of the part, both in position and orientation. The

linearMovement parameter has the same meaning that in alMoveRobot.

 alApproxToPart

int alApproxToPart(int robotId,int partId,

int opFrameId, int linearMovement,

double xDistance,double yDistance,

double zDistance)

This function approximates the robot indicated in robotId parameter to the location of

the opFrameId of the partId parameter. The actual ToolFrame of the robot will result

with the same orientation with the referred operation frame of the part but the position

will be the same with an offset of xDistance, yDistance, zDistance value in the

axes of the operation frame. Note that usually negative values will be used for

approximation. The linearMovement parameter has the same meaning that in

alMoveRobot.

More functions in VREAL documentation

15. Robot Attachment Functions
SEE VREAL documentation

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 7

16. Input/Output Functions
This set of functions is designed to control robot input/output signals. Each robot has defined a
set of digital outputs, digital inputs, analogical outputs and analogical inputs defined in the
constants:
NUM_DIGITAL_INPUTS NUM_ANALOGICAL_INPUTS
NUM_DIGITAL_OUTPUTS NUM_ANALOGICAL_OUTPUTS

 alSetDigitalOutput

int alSetDigitalOutput(int robotId,

int digitalOutputNo)

This function sets a digital output of a robot.

 alResetDigitalOutput

int alResetDigitalOutput(int robotId,

int digitalOutputNo)

This function resets a digital output of a robot.

 alResetAllDigitalOutput

int alResetAllDigitalOutput(int robotId)

This function resets all the digital outputs of a robot.

 alConnectDigitalInput

int alConnectDigitalInput(int robotId,

int digitalInputNo,int fromRobotId,

int fromDigitalOutputNo)

This function connects in a digital input of a robot the digital output of another robot.

 alCheckDigitalInput

int alCheckDigitalInput(int robotId,

int digitalInputNo,int *digitalStatus)

This function obtains in digitalStatus the state of a digital input of a robot.

More functions in VREAL documentation

17. Environment Functions
SEE VREAL documentation

18. Robot Operation Functions
This set of functions is designed to allow robot operation, including the interaction with the
environment.

 alActiveTrace

int alActiveTrace(int robotId,int active)

This function activates or deactivates the trace of the robot given by the robotId

parameter. If active parameter is ACTIVE_TRACE, the trace will be activated but if it is

NO_ACTIVE_TRACE, the trace will be deactivated. The default value is

NO_ACTIVE_TRACE, that is, the trace must be activated to be generated. When the

trace is active, all locations for active ToolFrame trajectory are stored on the trace
according to robot motions. Once a trace has been generated it will be drawn until it is
hidden or deleted with one of the next two functions.
Option: SEE VREAL documentation

More functions in VREAL documentation

 alPickPart

int alPickPart(int robotId, int partId,

int opFrameId,double toolStatus,

int checkOpFrame)

This function makes the robot indicated in robotId parameter to pick the part indicate

in partId according to the spatial relation between the active ToolFrame of the robot

and the operation frame of the part indicated with opFrameId.

When checkOpFrame is:

 CHECK_COINCIDENCE the part will be picked only if the active ToolFrame is

coincident (with a tolerance of 10
-3

) with the operation frame.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library (Summary) - 8

 NO_CHECK_COINCIDENCE the part will be picked anyway, keeping constant

the transformation from the active ToolFrame to the part operation frame.

In any case, the active tool status will be changed to the toolStatus parameter.

The effect of the function is that the part will be attached to the robot until the robot is
forced to place the part.
Options: SEE VREAL documentation
int alPickPart(int robotId,double toolStatus)

This function (reduced version of previous function) makes the robot indicated in

robotId parameter to pick the first part that accomplishes the spatial relation between

the active ToolFrame of the robot and any operation frame of the part. In any case, the

active tool status will be changed to the toolStatus parameter. The effect of the

function is that the found part will be attached to the robot until the robot is forced to
place the part.

 alPlacePart

int alPlacePart(int robotId, int partId,

double toolStatus)

This function makes the robot indicated in robotId parameter to place the part indicate

in partId. In addition, the active tool status will be changed to the toolStatus

parameter. The effect of the function is that the part will be detached from the robot. An
error is returned if the specified part is not attached to the specified robot.
int alPlacePart(int robotId, double toolStatus)

This function (reduced version of previous function) makes the robot indicated in

robotId parameter to place the part attached to the active tool frame of the robot. In

addition, the active tool status will be changed to the toolStatus parameter. The

effect of the function is that the part will be detached from the robot. An error is returned
if there is no part attached to the active tool frame of the specified robot.

19. Functions for Auxiliary List of Figures
SEE VREAL documentation

20. Functions for Display
SEE VREAL documentation

21. Distance Functions
SEE VREAL documentation

22. Video Functions
SEE VREAL documentation

23. Collision Check Functions
SEE VREAL documentation

24. VREAL.INI File
SEE VREAL documentation

