

Robótica
Departamento de Ingeniería de Sistemas y Automática

Universidad Politécnica de Valencia

EUROPEAN COMMISSION. DIRECTORATE GENERAL - JRC
Joint Research Centre – Ispra
Institute for the Protection and the Security of the Citizen (IPSC)

VIRTUAL ROBOT
EXTERNAL ACCESS LIBRARY

October 2012, Version 6.7b (VREAL 6.7b)

Developed by robótica
Department of System Engineering and Control (DISA)

Polytechnic University of Valencia (UPV)

Contact
Address

vrs@isa.upv.es
http://robotica.isa.upv.es/virtualrobot

DISA - UPV
Camino de Vera s/n E-46022, Valencia (Spain)

Tf: +34-963.879.575 Fax: +34-963.879.579

Supported by European Commission. Directorate General - JRC
Joint Research Centre - Ispra

Institute for the Protection and the Security of the Citizen (IPSC)

http://robotica.isa.upv.es/
http://www.isa.upv.es/
http://www.upv.es/
mailto:vrs@isa.upv.es
http://robotica.isa.upv.es/virtualrobot
http://www.jrc.org/
http://ipsc.jrc.cec.eu.int/

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 1

Index

INDEX .. 0

1. OBJECTIVE.. 1

2. IMPLEMENTATION .. 1

3. LIBRARY-KERNEL COMMUNICATION .. 1

4. FUNCTION PARAMETERS ... 2

5. CONSTANT DEFINITION ... 3

6. TYPE DEFINITION ... 4

7. ERROR CODES ... 4

8. INITIALIZATION FUNCTIONS ... 6

9. FILE FUNCTIONS .. 7

10. EDIT FUNCTIONS .. 9

11. ROBOT DEFINITION FUNCTIONS .. 11

12. SPEED FUNCTIONS .. 16

13. TOOL FUNCTIONS .. 18

14. ROBOT MOTION FUNCTIONS .. 21

15. ROBOT ATTACHMENT FUNCTIONS ... 27

16. INPUT/OUTPUT FUNCTIONS.. 28

17. ENVIRONMENT FUNCTIONS .. 31

18. ROBOT OPERATION FUNCTIONS ... 36

19. FUNCTIONS FOR AUXILIARY LIST OF FIGURES 39

20. FUNCTIONS FOR DISPLAY .. 56

21. DISTANCE FUNCTIONS .. 61

22. VIDEO FUNCTIONS ... 65

23. COLLISION CHECK FUNCTIONS ... 66

24. VREAL.INI FILE ... 67

APPENDIX A. LOCATION OVER-DEFINITION AS AN ARRAY 68

APPENDIX B. EULER ANGLES TYPE SELECTION 69

APPENDIX C. LOCATION OVER-DEFINITION AS TRANSFORMATION 70

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 1

1. Objective

The objective of this document is to explain a library developed to provide
access to some of the functionality of Virtual Robot Simulator (VRS) from a user
application. The library, called VR External Access Library (VREAL), is
implemented as a Dynamic Link Library on the file “vreal.dll”. The user
application can manage, through this library, the elements defined on VRS.

VREAL can be compiled with a dynamic link on the user application. The
“vreal.h” file contains the definition of the library, while the “vreal.lib” includes
the library access specification. Both files must be used to compile and link the
user application, while the “vreal.dll” file must be accessible for the user
application execution.

2. Implementation

The VR External Access Library provides an interface formed by a set of
functions whose objective is to allow the user to interact with the kernel of VRS.

In addition to constant and type definition, there are the following independent
sets of functions:

 A set of functions to initialize and close the Library

 A set of functions to manage files

 A set of functions to edit robots and the environment

 A set of functions to define and modify robot parameters

 A set of functions for speed control

 A set of functions for tool handle

 A set of functions for robot motion

 A set of functions for robot attachment

 A set of functions for inputs and outputs

 A set of functions for environment

 A set of functions to handle with robot operation

 A set of functions to handle an auxiliary list of figures

 A set of functions to handle the display options of VRS

 A set of functions for video recording

3. Library-Kernel Communication

The communication between the user application and the kernel of VRS can be
made in local mode or remote mode:

 In local mode, the user application must be run on the same computer
than VRS. In fact, VRS will ask for the name of the user application to be
run and will start it. The user application must initialize VREAL with the

function provided for this (alInitialize) with no parameter at all.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 2

Then, the user application has access to all the functionality of this
library.

 In remote mode, the user application can be run on the same computer
than VRS or in any other computer. In both cases, a TCP/IP protocol is
used for application communication. The user must first activate on VRS
the VREAL Remote Mode (File>>Start Remote VREAL Server). Then
the user must start his/her application wherever it is and the user
application must initialize VREAL with the function provided for this

(alInitialize) with the appropriate parameter (the name or ip-

address of the PC where VRS is running). Then, the user application has
access to all the functionality of this library.

In any case, THE LIBRARY MUST BE CLOSED before the user application
finishes.

4. Function Parameters

Some parameters are used in most of the functions and therefore are explained
once in this section.

For example, three parameters are used as identifier in many functions:

 robotId is the robot identifier. It is returned only by the function

alLoadRobot and used by any function that applies on a robot.

 objectId is the object identifier. It is returned only by the function

alGetObjectId and used by any function that applies on an object.

 partId is the part identifier. It is returned only by the function

alGetPartId and used by any function that applies on a part.

 figureId is the figure identifier. It is returned by any Add function and

used by any function that applies on a figure.

A location is usually represented in a function be means of:

 The position represented with the values x,y,z.

 The orientation represented with the values alpha, beta and gamma.

These three angles are the Euler Angles Type 2 (also called ZYZ).

According to these parameters, a location is computed with the following steps:

1. Rotation of alpha angle related to Z axis
2. Rotation of beta angle related to V axis (Y axis of mobile frame)
3. Rotation of gamma angle related to W axis (Z axis of mobile frame)
4. Translations of x,y,z values related to X, Y, Z axes (axes of fix frame)

There are some options on locations summarized as:

 The six values of the location can be grouped on an array as explained
on Appendix A.

 In both cases, a different Euler angle type can be used as explained on
Appendix B.

 The location can also be represented as a transformation matrix, as
explained on Appendix C.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 3

5. Constant Definition

The following constants are defined:

NUM_DOF NUM_ROBOTS

NUM_TOOLS NUM_OBJECTS NUM_PARTS

RESET SYNCHRO

POINTTOPOINT LINEAR

ABSOLUTE_MOVEMENT RELATIVE_MOVEMENT

ORIGIN TOOL_FRAME WORLD

CHECK_RANGE NO_CHECK_RANGE

CHECK_ORIENTATION NO_CHECK_ORIENTATION

CLOSEST

RIGHT_DOWN RIGHT_UP

LEFT_UP LEFT_DOWN

POSITIVE_WRIST NEGATIVE_WRIST

WIRED SHADED HIDDEN

ENVIRONMENT_LOADED ENVIRONMENT_NOT_LOADED

VISIBLE INVISIBLE

ACTIVE_TRACE NO_ACTIVE_TRACE

HIDE_TRACE NO_HIDE_TRACE

CHECK_COINCIDENCE NO_CHECK_COINCIDENCE

TRANSLATION ROTATION

X_AXIS Y_AXIS Z_AXIS

U_AXIS V_AXIS W_AXIS

EULER_ANGLES_TYPE_1 EULER_ANGLES_TYPE_2 EULER_ANGLES_TYPE_3

NUM_DIGITAL_INPUTS NUM_DIGITAL_OUTPUTS

NUM_ANALOGICAL_INPUTS NUM_ANALOGICAL_OUTPUTS

FIRST_VIEWPORT SECOND_VIEWPORT

THIRD_VIEWPORT FOURTH_VIEWPORT

FRAME

3DPOINT LINE DISK TRIANGLE 3DFACE

BOX PYRAMID TRIANGULAR_PYRAMID TENT WEDGE

CONE TUBE SPHERE DOME TORUS

CONE_SPHERE CONE_TWO_SPHERES TENT_CYLINDER TENT_TWO_CYLINDERS

The following color inversion table gives the possible parameters and meanings
for the color inversion functions:

PARAMETER MEANING
NOT_INVERTED_COLOR Proper object color
INVERTED_COLOR Color inversion
INVERT_IN_WHITE_COLOR Set color to white
INVERT_IN_YELLOW_COLOR Set color to yellow
INVERT_IN_PINK_COLOR Set color to pink
INVERT_IN_ORANGE_COLOR Set color to orange
INVERT_IN_RED_COLOR Set color to red
INVERT_IN_PURPLE_COLOR Set color to purple
INVERT_IN_LIGHT_GREEN_COLOR Set color to light green
INVERT_IN_DARK_GREEN_COLOR Set color to dark green
INVERT_IN_LIGHT_BLUE_COLOR Set color to light blue
INVERT_IN_DARK_BLUE_COLOR Set color to dark blue
INVERT_IN_GREY_COLOR Set color to grey
INVERT_IN_BLACK_COLOR Set color to black

Their values are defined in one of the following files:

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 4

 “Includes\VReal\VRealExternalDefines.h”.

 “Includes\VRealCommunications\VRealCommunicationsExternalDefines.h”.

 “Includes\VRTransf\VRTransfExternalDefines.h”.

 “Includes\VRMaths\VRMathsExternalDefines.h”.
All these files are included in “Includes\VReal\VReal.h”.

6. Type Definition

In “Includes\GeneralDefines.h”, the following types are defined:

typedef char STRING[256]

typedef unsigned long COLORREF

7. Error Codes

Every function in the library has at least the following possible values to be
returned (unless other case stated):

RET_OK Successful execution

RET_ERROR Error in execution

When a function of VREAL returns an error, it can be produced by any of the
following modules:

 VRMaths
 VRTransf
 VRStdio
 VRealCommunications
 VREAL
 VRPROL
 Virtual Robot Simulator

To recognize the module that generates the error, the following constants are
defined (as defined in the file Includes\GeneralDefines.h):

MODULE CONSTANT VALUE

VRMaths VR_MATHS_ERROR 1000

VRTransf VR_TRANSF_ERROR 2000

VRStdio VR_STDIO_ERROR 3000

VrealCommunications VR_VREAL_COMM_ERROR 4000

VREAL VR_VREAL_ERROR 5000

VRPROL VR_VRPROL_ERROR 6000

VRS VR_ERROR 7000

The returned error will be the addition of a specific error and the module
constant identifier, as defined in the header file of each module. A summary is
included here:

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 5

MODULE Header File Errors

VRMaths VRMathsError.h

#DEFINE INVALID_SIN_VALUE VR_MATHS_ERROR + 1

#DEFINE INVALID_COS_VALUE VR_MATHS_ERROR + 2

VRTransf VRTransfError.h

#DEFINE INVALID_NO_POINTS VR_TRANSF_ERROR + 1

#DEFINE INVALID_TRANSFORMATION VR_TRANSF_ERROR + 2

#DEFINE INVALID_AXIS VR_TRANSF_ERROR + 3

#DEFINE INVALID_EULER_TYPE VR_TRANSF_ERROR + 4

#DEFINE INVALID_OPERATION VR_TRANSF_ERROR + 5

#DEFINE INVALID_QUATERNION VR_TRANSF_ERROR + 6

VRStdio VRStdioError.h

#DEFINE INVALID_DIALOG_TYPE VR_STDIO_ERROR + 1

VRealCommunications VRealCommunictaionsError.h
#DEFINE ERROR_INI_FILE VR_VREAL_COMM_ERROR + 1

#DEFINE TIMEOUT_ERROR VR_VREAL_COMM_ERROR + 2

VREAL VrealError.h

#DEFINE INVALID_ROBOT_NAME VR_VREAL_ERROR + 1

#DEFINE INVALID_JOINT_NUMBER VR_VREAL_ERROR + 2

#DEFINE INVALID_FRAME VR_VREAL_ERROR + 3

VRPROL VRProlError.h

#DEFINE ERROR_IN_VREAL_FUNCTION VR_VRPROL_ERROR + 1

VRS VrealError.h

#DEFINE ROBOT_OUT_OF_RANGE VR_ERROR + 6

#DEFINE INVERSE_KINEMATICS_ERROR VR_ERROR + 7

#DEFINE ROBOT_INVALID_ID VR_ERROR + 8

#DEFINE ROBOT_INVALID_FREEDOM_DEGREES VR_ERROR + 11

#DEFINE ROBOT_INVALID_IKALGORITHM VR_ERROR + 12

#DEFINE ROBOT_INVALID_TOOL_FRAME VR_ERROR + 16

#DEFINE ROBOT_INVALID_POSITION VR_ERROR + 19

#DEFINE ROBOT_INVALID_ORIENTATION VR_ERROR + 20

#DEFINE ROBOT_INVALID_TYPE VR_ERROR + 23

#DEFINE WRIST_INVALID_TYPE VR_ERROR + 24

#DEFINE ARM_INVALID_TYPE VR_ERROR + 25

#DEFINE INVALID_SOLUTION_SELECTED VR_ERROR + 26

#DEFINE ROBOT_OUT_OF_FRAME VR_ERROR + 27

#DEFINE ROBOT_ERROR_LOCATION VR_ERROR + 28

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 6

8. Initialization Functions

There are two functions to initialize and close the library:

 alInitialize

a) For local mode:

int alInitialize()

This function initializes the VREAL library in local mode. It must be called
before any other function of the library is used.

b) For remote mode:

int alInitialize(STRING host)

The host parameter indicates the name or ip-address of the PC where

VRS is running in VREAL Remote Mode. A network connection is
required. The VREAL Remote Mode (File>>Start Remote VREAL
Server) must be activated on VRS.

 alClose

int alClose()

This function closes the VREAL library. It must be called before
finishing the user application in any of the modes (local or remote).

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 7

9. File Functions

This set of functions mainly allows to load and close robots and environment.

 alLoadRobot

int alLoadRobot(

STRING fileName,

int *robotId)

This function loads on VRS a new robot from a rkf file (indicated on

fileName) and gives back the robot identifier on robotID. When a

robot with the same name exists, VRS adds a number (1,2,3,…) to the
robot name. The maximum number of robots is defined by the constant

NUM_ROBOTS. The loaded robot becomes the active robot. The file name

starts from VR-Path.

 alCloseRobot

int alCloseRobot(int robotId)

This function closes on VRS the robot specified with robotID. If the

closed robot is the active robot, the first robot on the list of robots
becomes the active robot.

 alSaveRKFRobot

int alSaveRKFRobot(int robotId , STRING rkfFileName)

This function saves a robot as a robot kinematics file (RKF). An error is
returned if there is no robot with this identifier. The file name starts from
VR-Path.
************ NOT IMPLEMENTED ************

 alSaveRGFRobot

int alSaveRGFRobot(int robotId , STRING rgfFileName)

This function saves a robot as a robot geometric file (RGF).
An error is returned if there is no robot with this identifier.
The file name starts from VR-Path.
************ NOT IMPLEMENTED ************

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 8

 alLoadEnvironment

int alLoadEnvironment(STRING fileName)

This function loads an environment (indicated on fileName) on VRS. As

only one environment can be opened on VRS, the new environment will
replace any other possible environment. The file name starts from VR-
Path.

 alCloseEnvironment

int alCloseEnvironment()

This function closes the environment on VRS.

 alSaveEnvironment

int alSaveEnvironment(STRING enfFileName)

This function saves the environment as an environment file (ENF). An
error is returned if the environment is empty. The file name starts from
VR-Path.

 alCloseAll

int alCloseAll()

This function closes all the robots and the environment on VRS.

 alGetVRPath

int alGetVRPath(STRING VRPath)

This function gets the absolute path for the Virtual Robot Simulator
installation (that is, where the VRS executable file is).

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 9

10. Edit Functions

This set of functions mainly allows placing robots and environment.

 alGetRobotFrame

int alGetRobotFrame(

int robotId,

double *x, double *y, double *z,

double *alpha, double *beta, double *gamma)

This function obtains the location of robot frame related to world frame,
that is, where is located the robot in the space.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alPlaceRobot

int alPlaceRobot(

int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma)

This function places a robot on VRS, that is, specifies where the robot is
located in the space.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 10

 alGetEnvironmentFrame

int alGetEnvironmentFrame(

double *x, double *y, double *z,

double *alpha, double *beta, double *gamma)

This function obtains the location of the environment frame related to
world frame, that is, where is located the environment in the space.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alPlaceEnvironment

int alPlaceEnvironment(

 double x, double y, double z,

 double alpha, double beta, double gamma)

This function places the environment on VRS, that is, specifies where the
environment is located in the space.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 11

11. Robot Definition Functions

This set of functions is mainly designed to obtain and modify the robot
configuration.

 alSetActiveRobot

int alSetActiveRobot(

int robotId)

This function actives an specific robot specified with the parameter. The
information of the active robot is shown on the dynamic information field.

 alGetActiveRobot

int alGetActiveRobot(

int *robotId)

This function obtains in its parameter the robot identifier of the active
robot.

 alInvertRobotColor

int alInvertRobotColor(

 int robotId,

int invert)

This function inverts the color of the robot specified in the first parameter.
The second parameter can be any of the values indicated in the table of
color inversions.

 alInvertRobotLinkColor

int alInvertRobotLinkColor(

 int robotId,

int linkId,

int invert)

This function inverts the color the link specified in the first parameter of
the robot specified in the second parameter. The third parameter can be
any of the values indicated in the table of color inversions.

 alInvertRobotAdapterColor

int alInvertRobotAdapterColor(

 int robotId,

int invert)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 12

This function inverts the color of the adapter of the robot specified in the
first parameter. The second parameter can be any of the values indicated
in the table of color inversions.

 alInvertRobotToolColor

int alInvertRobotToolColor(

 int robotId,

 int toolId,

int invert)

This function inverts the color of the tool specified in the second
parameter of the robot specified in the first parameter. The third
parameter can be any of the values indicated in the table of color
inversions.

 alGetAvailableRobots

int alGetAvailableRobots(

int robotIds[NUM_ROBOTS],

STRING robotNames[NUM_ROBOTS],

int *numberOfRobots)

This function obtains the arrays of identifiers and associated names of
the available robots on VRS, that is, the robots loaded. The number of
available robots is returned on the last parameter.

Parameters:

robotIds is an array with the identifiers of the available robots

robotNames is an array of names of the available robots

numberOfRobots is the number of available robots. If it is equal to 0,

there is no robot available on VRS. It specifies the number of valid values
on the arrays.

 alGetRobotIdentifier

int alGetRobotIdentifier(

STRING robotName,

int *robotId)

This function obtains the first robot identifier for a robot name. An error is
returned if there is no robot with this name. The name is the Name field
of GENERAL section in the RKF file of the robot. In order to avoid name
duplications, when VRS loads a robot with the same name than an
already loaded robot, changes the name adding a number to it. That is, if
three robots with the same name (“robot”) are loaded, the names will be
“robot”, “robot1”, “robot2”.
Parameters:

robotName is a string with the robot name.

robotId is the robot identifier returned by the function

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 13

 alGetRobotConfiguration

int alGetRobotConfiguration(

int robotId,

int *numberOfDOF,

STRING robotType,

STRING wristType,

STRING joints)

This function obtains the configuration of a robot.

Parameters:

numberOfDOF is the number of degrees of freedom of the robot given by

the robotId parameter. robotType, wristType, joints are the

parameters of robot configuration as defined on Robot Kinematics File
(RKF) description (see VRFFD document).

 alGetRobotIKAlgorithm

int alGetRobotIKAlgorithm(

int robotId,

STRING ikAlgorithm)

This function obtains the inverse kinematics algorithm for the robot

indicated in the ikAlgorithm parameter.

 alGetRobotDHFrame0

int alGetRobotDHFrame0(

int robotId,

double dhFrame0[4][4])

This function obtains the transformation matrix for robot DH frame 0
related to robot frame.

 alGetRobotDHTable

int alGetRobotDHTable(

int robotId,

double dhTable[NUM_DOF][4])

This function obtains the DH Table for a robot.

 alGetRobotUserSpace

int alGetRobotUserSpace(

int robotId,

double userSpace[NUM_DOF][2])

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 14

This function obtains the user space definition for a robot.

 alGetRobotRanges

int alGetRobotRanges(

int robotId,

double jointRanges[NUM_DOF][2])

This function obtains the joints ranges of the robot that indicates the

robotId parameter. The joint ranges are returned in the matrix named

jointRanges.

 alGetRobotSynchro

int alGetRobotSynchro(

int robotId,

double jointSynchro[NUM_DOF])

This function obtains the synchronization configuration for a robot.

 alGetRobotOrigin

int alGetRobotOrigin(

int robotId,

double originFrame[4][4])

This function obtains the transformation matrix for robot programming
Origin frame related to robot frame.

 alGetRobotSettings

int alGetRobotSettings(

int robotId,

int *armConf,

int *wristConf)

This function obtains the robot configuration settings for a robot. This
configuration will be used to determine robot configuration on robot
motions. The first parameter indicates the robot whose configuration
must be obtained. The rest of values give the configuration according to:

armConf may be:

CLOSEST, RIGHT_DOWN, RIGHT_UP, LEFT_DOWN, LEFT_UP

wristConf may be:

POSITIVE_WRIST, NEGATIVE_WRIST

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 15

 alGetRobotCheckRanges

int alGetRobotCheckRanges(

int robotId,

int *checkRange)

This function obtains the robot check range state. When checkRange is

NO_CHECK_RANGE the robot moves as if no range limitation is applied.

When checkRange is CHECK_RANGE the robot cannot move outside its

ranges.

 alSetRobotCheckRanges

int alSetRobotCheckRanges(

int robotId,

int checkRange)

This function defines the robot check range state. When checkRange is

NO_CHECK_RANGE the robot moves as if no range limitation is applied.

When checkRange is CHECK_RANGE the robot cannot move outside its

ranges. The default value is CHECK_RANGE.

 alGetRobotCheckOrientation

int alGetRobotCheckOrientation(

int robotId,

int *checkOrientation)

This function obtains the robot check orientation state. When

checkOrientation is NO_CHECK_ORIENTATION the robot moves as if

no orientation constraints are specified on movements. When

checkOrientation is CHECK_ORIENTATION the robot moves

according to orientations constraints.

 alSetRobotCheckOrientation

int alSetRobotCheckOrientation(

int robotId,

int checkOrientation)

This function defines the robot check orientation state. When

checkOrientation is NO_CHECK_ORIENTATION the robot moves as if

no orientation constraints are specified on movements. When

checkOrientation is CHECK_ORIENTATION the robot moves

according to orientations constraints. The default value is

CHECK_ORIENTATION.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 16

12. Speed Functions

This set of functions is mainly designed to control speed scale and robot speed.

 alGetSpeedScale

int alGetSpeedScale(

double *speedScale)

This function sets the speed scale. The speed scale value will be
between -1.0 and 1.0, where -1.0 indicates the minimum speed scale and
1.0 the maximum speed scale.

 alSetSpeedScale

int alSetSpeedScale(

double speedScale)

This function sets the speed scale. The speed scale value must be
between -1.0 and 1.0 (otherwise an error is returned and speed scale set
to closest value), where -1.0 indicates the minimum speed scale and 1.0
the maximum speed scale. The initial default value is 0 (no speed
scaling). The meaning of the speed scale is as follows:

 If the speed scale is set to a positive value speedScale, the speed

of all the robots are mapped to the interval [speedScale,1]. That is,

for a speedScale value of 0.25, the robot speeds will be mapped

from [0,1] to [0.25,1] and a robot speed of 0.5 becomes 0.625. As
extreme value, when the speed scale is set to 1, all the robot speeds
will be scaled to 1.

 If the speed scale is set to a negative value speedScale, the speed

of all the robots are mapped to the interval [0,1+speedScale]. That

is, for a speedScale value of -0.25, the robot speeds will be mapped

from [0,1] to [0,0.75] and a robot speed of 0.5 becomes 0.375. As
extreme value, when the speed scale is set to -1, all the robot speeds
will be scaled to 0.

Hence, positive speed scale will make faster the slow robot motions,
while negative speed scale will make slower the fast robot motions.

 alGetRobotSpeed

int alGetRobotSpeed(

int robotId,

double *robotSpeed)

This function gets the speed of the robot given by robotId parameter.

The robotSpeed value will be between 0.0 and 1.0, where 0.0 indicates

the slowest speed and 1.0 the fastest speed.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 17

 alSetRobotSpeed

int alSetRobotSpeed(

int robotId,

double robotSpeed)

This function sets the speed of the robot given by robotId parameter.

The robotSpeed value must be between 0.0 and 1.0, where 0.0

indicates the slowest speed and 1.0 the fastest speed. The initial default
value for any robot is 0.5.

The robot speed, after adjusted with the global speed scale, is the
simulation robot speed used to compute delays in motions. That is, when
the simulation robot speed is 1.0, no delay is generated for drawing while
robot motion (drawing is as fast as the computer allows). On the other
side, when simulation robot speed is lower than 1.0, delays are
generated for drawing different interpolation steps in robot motion.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 18

13. Tool Functions

This set of functions is mainly designed to manage the tool.

 alGetNumberOfToolFrames

int alGetNumberOfToolFrames(

 int robotId,

 int *numberToolFrames)

This function obtains the number of ToolFrames defined for a robot. The
first parameter indicates the robot identifier. The second value gives the
number of the defined ToolFrames for this robot. ToolFrame0 is not
considered.

 alGetActiveToolFrame

int alGetActiveToolFrame(

 int robotId,

 int *toolFrameId)

This function obtains the active ToolFrame for a robot. The first
parameter indicates the robot whose ToolFrame must be obtained. The
second value gives the number of the ToolFrame that is active.

 alSetActiveToolFrame

int alSetActiveToolFrame(

 int robotId,

 int toolFrameId)

This function sets the active ToolFrame. The first parameter indicates the
robot whose ToolFrame must be changed. The second value indicates
the number of the ToolFrame that must be active after the function
execution. If the ToolFrame is not defined, the function returns and the
active ToolFrame is not changed.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 19

 alGetToolFrameDefinition

int alGetToolFrameDefinition(

 int robotId,

 double *x, double *y, double *z,

 double *alpha, double *beta, double *gamma)

This function obtains the definition of the active ToolFrame. The first
parameter indicates the robot identifier. The rest of parameters give the
location of the actual ToolFrame related to ToolFrame0. When the active
ToolFrame is ToolFrame0, the location is related to the last DH frame.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

 alGetAvailableTools

int alGetAvailableTools(

 int robotId,

int toolIds[NUM_TOOLS],

STRING toolNames[NUM_TOOLS],

 int *numberOfTools)

This function obtains the arrays of identifiers and associated names of

the available tools of the robotId parameter. The number of available

tools for this robot is returned on the last parameter.

Parameters:

robotId is the identifier of the robot

toolIds is an array with the identifiers of the available tools

toolNames is an array of names of the available tools

numberOfTools is the number of available tools.

 alGetActiveTool

int alGetActiveTool(

 int robotId,

 int *toolId)

This function obtains the active tool for a robot. The first parameter
indicates the robot whose tool must be obtained. The second value gives
the number of the tool that is active. This value will be 0 if the robot has
no tool.

 alSetActiveTool

int alSetActiveTool(

 int robotId,

 int toolId)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 20

This function sets the active Tool. The first parameter indicates the robot
whose Tool must be changed. The second value indicates the number of
the Tool that must be active after the function execution. If the robot does
not have this tool, an error is returned.

 alGetNumberOfToolStates

int alGetNumberOfToolStates(

 int robotId,

 int *noToolStates)

This function obtains the number of tool states of the active tool for a
robot. The first parameter indicates the robot whose number of tool
states must be obtained. The function returns in the second parameter
the number of tool states of the active tool.

 alGetToolStatus

int alGetToolStatus(

 int robotId,

 double *toolStatus)

This function obtains the tool status of the active tool for a robot. The first
parameter indicates the robot whose tool status must be obtained. The
function returns in the second parameter the tool status of the active tool
in the interval [0.0,1.0].

 alSetToolStatus

int alSetToolStatus(

 int robotId,

double toolStatus)

This function sets the tool status for the active tool. The first parameter
indicates the robot whose tool must be changed. The second value
indicates the tool status of the active tool of this robot. The value must be
in the interval [0.0,1.0], assigning the closest end value in other case.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 21

14. Robot Motion Functions

This set of functions is designed to move robots.

 alRobotReset

int alRobotReset(

int robotId,

 int resetType)

This function moves the robot which identifier is equal to the first
parameter to its reset configuration or to its synchronism configuration
depending on the value of the second parameter. The value of this

second parameter must be RESET or SYNCHRO.

 alGetRobotJoints

int alGetRobotJoints(

int robotId,

double joints[NUM_DOF])

This function obtains the joints configuration of the robot that indicates

the robotId parameter. The joint values are returned in the array

named joints.

 alSetRobotJoints

int alSetRobotJoints(

 int robotId,

 double joints[NUM_DOF])

This function moves the robot, which identifier is passed as the first
parameter of the function, to the configuration where the values of its
joints are the specified in the array that is passed as the second
parameter of the function. No interpolation is applied for the movement,
producing a jump from a robot configuration to the new one.

 alMoveRobotJoints

int alMoveRobotJoints(

 int robotId,

 double joints[NUM_DOF])

This function moves the robot, which identifier is passed as the first
parameter of the function, to the configuration where the values of its
joints are the specified in the array that is passed as the second
parameter of the function. A linear interpolation on Joint Space is
generated for the movement.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 22

 alMoveOneRobotJoint

int alMoveOneRobotJoint(

 int robotId,

 int joint,

 double jointValue,

 int absoluteMovement)

This function moves the specified joint of a robot to a new value,
specified as an absolute or relative motion according to the value of the

last parameter. The absoluteMovement parameter can have one of

these two values:

ABSOLUTE_MOVEMENT For Absolute movement

RELATIVE_MOVEMENT For Relative movement

A linear interpolation on Joint Space is generated for the movement. An
error is returned when the specified joint is not valid (less than 1 or
greater than the DOFs of the robot).

 alGetRobotLocation

int alGetRobotLocation(

 int robotId,

 double *x, double *y, double *z,

double *alpha, double *beta, double *gamma)

This function obtains the location of the active ToolFrame of the robot

given by the robotId parameter. ToolFrame location is related to robot

Programming Origin frame.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 A last parameter can be specified to obtain robot location from WORLD

frame with the following function interface (always specifying Euler
angles according to Appendix B):
int alGetRobotLocation(int robotId, double *x, double *y,

double *z, double *alpha, double *beta, double *gamma,

int frame, int eulerType)

An error is returned if the parameter used is TOOL_FRAME.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 23

 alMoveRobot

int alMoveRobot(

int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

 int linearMovement,

 int absoluteMovement,

int frame)

This function moves a robot to a given position.

Parameters:

The parameter robotId is the robot to be moved.

The linearMovement parameter can have two possible values:

POINTTOPOINT For PointToPoint Movement

LINEAR For Linear Movement

When the value of this parameter is POINTTOPOINT, the robot moves

from its current location to the destination location without following any

special trajectory. When the value of this parameter is LINEAR, the robot

moves from its current location to the destination location according to a
linear trajectory between the two locations for the ToolFrame.

The absoluteMovement parameter can have one of these two values:

ABSOLUTE_MOVEMENT For Absolute movement

RELATIVE_MOVEMENT For Relative movement

If the value is ABSOLUTE_MOVEMENT, it means that the x, y, z,

alpha, beta, gamma values represent an absolute movement.

Otherwise if the value is RELATIVE_MOVEMENT the x, y, z, alpha,

beta, gamma values represent a relative movement from the current

location.

The frame parameter can have one of these values:

ORIGIN For Origin Frame

TOOL_FRAME For Tool Frame

WORLD For World Frame

If the value is ORIGIN, the Programming Origin Frame is taken as the

reference of the location. If the value of the frame parameter is

TOOL_FRAME, the current location of the active ToolFrame is taken as

the reference frame of the movement. If the value of the frame parameter

is WORLD, the World Frame is taken as the reference frame of the

movement. Therefore, the specified location represents the location of
the active ToolFrame related to the robot programming Origin Frame (for

ORIGIN), to the current location of the active ToolFrame (for

TOOL_FRAME) or the world frame (for WORLD).

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 24

Options:
 The last three parameters can be avoided to consider a

POINTTOPOINT, ABSOLUTE_MOVEMENT related to ORIGIN frame.

Then the function can be called with this interface:
int alMoveRobot(int robotId, double x, double y, double z,

double alpha, double beta, double gamma)
 The location can be managed as an array according to Appendix A.

Also the three parameters can be avoided as in previous option,
giving the following interface:
int alMoveRobot(int robotId, double location[6])

 A different type for the Euler angles can be specified according to
Appendix B. This option is not compatible with the reduced version of
first and second options.

 The location can also be managed as a transformation matrix,
according to Appendix C. Also the three parameters can be avoided
as in previous option, giving the following interface:
int alMoveRobot(int robotId, double transformation[4][4])

 alMove

int alMove(

int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

int moveParameter)

This function is the same as the previous one but with the motion
parameters in just one parameter as addition of them, as in the example:
alMove(robotId,x,y,z,a,b,g,LINEAR+RELATIVE_MOVEMENT+WORLD)

POINTTOPOINT, ABSOLUTE_MOVEMENT and ORIGIN are default values

and must not be added. None of the parameters can be added twice. The
options are the same than in previous function.

 alSetRobotLocation

int alSetRobotLocation(

int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

 int absoluteMovement,

int frame)

This function moves a robot to a given position without interpolation. The
effect is that the robot disappears from its current configuration and
appears on the specified configuration, without any transit from a
configuration to the new one. The parameters and options are the same

as in alMoveRobot, except linearMovement, which have no sense in

this function.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 25

 alApproxToLocation

int alApproxToLocation(

int robotId,

 double x, double y, double z,

 double alpha, double beta, double gamma,

 int linearMovement,

 int frame,

double xDistance,

double yDistance,

double zDistance)

This function approximates the robot indicated in robotId parameter to

a location. The actual ToolFrame of the robot will result with the same
orientation with the referred location but the position will be the same with

an offset of xDistance, yDistance, zDistance values related to

the robot origin frame (when frame is ORIGIN) or active ToolFrame

(when frame is TOOL_FRAME) according to the frame parameter

(WORLD cannot be used). The linearMovement parameter has the

same meaning that in alMoveRobot.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2 always

referred to the robot origin frame.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alMoveToPart

int alMoveToPart(

int robotId,

int partId,

 int opFrameId,

int linearMovement)

This function moves the robot indicated in robotId parameter to the

location of the opFrameId of the partId parameter, making coincident

the actual ToolFrame of the robot with the referred operation frame of the

part, both in position and orientation. The linearMovement parameter

has the same meaning that in alMoveRobot.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 26

 alApproxToPart

int alApproxToPart(

int robotId,

int partId,

int opFrameId,

 int linearMovement,

double xDistance,

double yDistance,

double zDistance)

This function approximates the robot indicated in robotId parameter to

the location of the opFrameId of the partId parameter. The actual

ToolFrame of the robot will result with the same orientation with the
referred operation frame of the part but the position will be the same with

an offset of xDistance, yDistance, zDistance value in the axes of

the operation frame. Note that usually negative values will be used for

approximation. The linearMovement parameter has the same meaning

that in alMoveRobot.

 alGetRobotZone

int alGetRobotZone(

int robotId,

double *robotZone)

This function obtains the zone for a robot. The zone value will be in the
interval [0.0,1.0].

 alSetRobotZone

int alSetRobotZone(

int robotId,

double robotZone)

This function defines the zone for a robot. The zone value must be in the
interval [0.0,1.0]. The default value is 0.5. This function has no visible
effect on VRS but it will be transmitted to the robot controller when a
robot is connected to VRS.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 27

15. Robot Attachment Functions

This set of functions is designed to attach robots.

 alAttachRobot2RobotToolFrame

int alAttachRobot2RobotToolFrame(

 int robotAttachedId,

int robotPlatformId,

int toolFrameId)

This function attaches a robot (its robot frame) to a Tool Frame of
another robot. When the robot used as platform moves, the robot
attached modifies its location according to this movement.

 alFreeRobotAttachment

int alFreeRobotAttachment(

 int robotId)

This function frees a robot if it was attached to another robot.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 28

16. Input/Output Functions

This set of functions is designed to control robot input/output signals. Each
robot has defined a set of digital outputs, digital inputs, analogical outputs and
analogical inputs defined in the constants:
NUM_DIGITAL_INPUTS

NUM_DIGITAL_OUTPUTS

NUM_ANALOGICAL_INPUTS
NUM_ANALOGICAL_OUTPUTS

 alSetDigitalOutput

int alSetDigitalOutput(

 int robotId,

int digitalOutputNo)

This function sets a digital output of a robot.

 alResetDigitalOutput

int alResetDigitalOutput(

 int robotId,

int digitalOutputNo)

This function resets a digital output of a robot.

 alResetAllDigitalOutput

int alResetAllDigitalOutput(

 int robotId)

This function resets all the digital outputs of a robot.

 alCheckDigitalOutput

int alCheckDigitalOutput(

 int robotId,

 int digitalOutputNo,

int *digitalStatus)

This function obtains in digitalStatus the state of a digital output of a

robot.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 29

 alGetAllDigitalOutputs

int alGetAllDigitalOutputs(

 int robotId,

int digitalValues[NUM_DIGITAL_OUTPUTS])

This function reads all the values from the digital outputs of a robot.

 alConnectDigitalInput

int alConnectDigitalInput(

 int robotId,

int digitalInputNo,

int fromRobotId,

int fromDigitalOutputNo)

This function connects in a digital input of a robot the digital output of
another robot.

 alCheckDigitalInput

int alCheckDigitalInput(

 int robotId,

int digitalInputNo,

int *digitalStatus)

This function obtains in digitalStatus the state of a digital input of a

robot.

 alGetAllDigitalInputs

int alGetAllDigitalInputs(

 int robotId,

int digitalValues[NUM_DIGITAL_INPUTS])

This function gets all the values from the digital inputs of a robot.

 alSetAnalogicalOutput

int alSetAnalogicalOutput(

 int robotId,

int analogicalOutputNo,

double value)

This function sends a value to an analogical output of a robot.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 30

 alGetAnalogicalOutput

int alGetAnalogicalOutput(

 int robotId,

 int analogicalOutputNo,

double *Value)

This function gets a value from an analogical output of a robot.

 alGetAllAnalogicalOutputs

int alGetAllAnalogicalOutputs(

 int robotId,

double analogicalValues[NUM_ANALOGICAL_OUTPUTS])

This function reads all the values from the analogical outputs of a robot.

 alConnectAnalogicalInput

int alConnectAnalogicalInput(

 int robotId,

int analogicalInputNo,

int fromRobotId,

int fromAnalogicalOutputNo)

This function connects in an analogical input of a robot the analogical
output of another robot.

 alGetAnalogicalInput

int alGetAnalogicalInput(

 int robotId,

int analogicalInputNo,

double *value)

This function gets a value from an analogical input of a robot.

 alGetAllAnalogicalInputs

int alGetAllAnalogicalInputs(

 int robotId,

double analogicalValues[NUM_ANALOGCAL_INPUTS])

This function gets all the values from the analogical inputs of a robot.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 31

17. Environment Functions

This set of functions is designed to allow handling the environment elements.

 alExistsEnvironment

int alExistsEnvironment(

int *exists)

This function obtains in exists if there is an environment loaded on

VRS (exists=ENVIRONMENT_LOADED) or if there is no one

(exists=ENVIRONMENT_NOT_LOADED).

 alGetAvailableObjects

int alGetAvailableObjects(

int objectIds[NUM_OBJECTS],

STRING objectNames[NUM_OBJECTS],

int *numberOfObjects)

This function obtains the arrays of identifiers and associated names of
the available objects on the current environment of VRS, that is, the
objects loaded in the environment. The number of available objects is
returned on the last parameter.

 alGetObjectId

int alGetObjectId(

 STRING objectName,

int *objectId)

This function obtains the first object identifier for a object name. An error
is returned if there is no object with this name.

 alGetObjectLocation

int alGetObjectLocation(

 int objectId,

 double *x, double *y, double *z,

 double *alpha, double *beta, double *gamma)

This function obtains the location of the object given by the objectId

parameter. The location is related to the environment frame. An error is
returned if there is no object with this identifier.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 32

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alSetObjectLocation

int alSetObjectLocation(

 int objectId,

 double x, double y, double z,

 double alpha, double beta, double gamma)

This function places the object given by the objectId parameter. The

location is related to the environment frame. An error is returned if there
is no object with this identifier.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alDelObject

int alDelObject(int objectId)

This function deletes an object from the environment. An error is returned
if there is no object with this identifier.

 alInvertObjectColor

int alInvertObjectColor(

 int objectId,

int invert)

This function inverts the color of the object specified in the first
parameter. The second parameter can be any of the values indicated in
the color inversion table.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 33

 alGetAvailableParts

int alGetAvailableParts(

int partIds[NUM_PARTS],

STRING partNames[NUM_PARTS],

int *numberOfParts)

This function obtains the arrays of identifiers and associated names of
the available parts on the current environment of VRS, that is, the parts
loaded in the environment. The number of available parts is returned on
the last parameter.

 alGetPartId

int alGetPartId(

 STRING partName,

int *partId)

This function obtains the first part identifier for a part name. An error is
returned if there is no part with this name.

 alGetPartLocation

int alGetPartLocation(

 int partId,

 double *x, double *y, double *z,

 double *alpha, double *beta, double *gamma)

This function obtains the location of the part given by the partId

parameter. The location is related to the environment frame. An error is
returned if there is no part with this identifier.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alSetPartLocation

int alSetPartLocation(

 int partId,

 double x, double y, double z,

 double alpha, double beta, double gamma)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 34

This function places the part given by the partId parameter. The

location is related to the environment frame. An error is returned if there
is no part with this identifier.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alDelPart

int alDelPart(int partId)

This function deletes a part from the environment. An error is returned if
there is no part with this identifier.

 alInvertPartColor

int alInvertPartColor(

 int partId,

int invert)

This function inverts the color of the object specified in the first
parameter. The second parameter can be any of the values indicated in
the color inversion table.

 alGetNumberOfOpFrames

int alGetNumberOfOpFrames(

int partId,

int *opFrameNumber)

This function gets the number of operation frames of the part indicated by

partId parameter, in the opFrameNumber parameter.

 alGetPartOperationFrame

int alGetPartOperationFrame(

int partId,

int opFrame,

 double *x, double *y, double *z,

 double *alpha, double *beta, double *gamma)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 35

This function gives the location of an operation frame indicated by

opFrame of a part indicated by partId parameter. The location is

related to the part frame.

The location is represented with a position (x,y,z) and a orientation

(alpha, beta and gamma) specified in Euler Angles type 2.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 36

18. Robot Operation Functions

This set of functions is designed to allow robot operation, including the
interaction with the environment.

 alActiveTrace

int alActiveTrace(

int robotId,

int active)

This function activates or deactivates the trace of the robot given by the

robotId parameter. If active parameter is ACTIVE_TRACE, the trace

will be activated but if it is NO_ACTIVE_TRACE, the trace will be

deactivated. The default value is NO_ACTIVE_TRACE, that is, the trace

must be activated to be generated. When the trace is active, all locations
for active ToolFrame trajectory are stored on the trace according to robot
motions. Once a trace has been generated it will be drawn until it is
hidden or deleted with one of the next two functions.
Option:

The second parameter can be avoided to use the ACTIVE_TRACE

value. Then the function can be called with this interface:
int alActiveTrace(int robotId)

 alHideTrace

int alHideTrace(

int robotId,

int hide)

This function hides or shows the trace of the robot given by the robotId

parameter. If hide parameter is HIDE_TRACE, the trace will be hidden

but when it is NO_HIDE_TRACE, the trace will be shown (if there is some

trace). The default value is NO_HIDE_TRACE, that is, the function must

be called with a HIDE_TRACE parameter to hide the trace.

Option:

The second parameter can be avoided to use the HIDE_TRACE value.

Then the function can be called with this interface:
int alHideTrace(int robotId)

 alDeleteTrace

int alDeleteTrace(

int robotId)

This function deletes all the locations in the trace of the robot given by

the robotId parameter, resulting in an empty trace.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 37

 alSetColorTrace

int alSetColorTrace(

int robotId,

COLORREF color)

This function changes the color of the trace of the robot given by the

robotId parameter. The color parameter indicates the new color for

the draw of the trace.

 alPickPart

int alPickPart(

int robotId,

int partId,

int opFrameId,

double toolStatus,

int checkOpFrame)

This function makes the robot indicated in robotId parameter to pick

the part indicate in partId according to the spatial relation between the

active ToolFrame of the robot and the operation frame of the part

indicated with opFrameId.

When checkOpFrame is:

 CHECK_COINCIDENCE the part will be picked only if the active

ToolFrame is coincident (with a tolerance of 10-3) with the
operation frame.

 NO_CHECK_COINCIDENCE the part will be picked anyway,

keeping constant the transformation from the active ToolFrame to
the part operation frame.

In any case, the active tool status will be changed to the toolStatus

parameter.

The effect of the function is that the part will be attached to the robot until
the robot is forced to place the part.

Options:
Different tolerances can be defined adding new parameters. The new
parameters will be (in this order): tolerance in X, tolerance in Y, tolerance
in Z, tolerance in Alpha, tolerance in Beta, tolerance in Gamma. Not all
must be used, but the order is always as specified above. Then the part
will be picked only when this tolerance is valid for all the specified values.
The function is defined as:
int alPickPart(int robotId, int partId, int opFrameId,

double toolStatus, int checkOpFrame,

double xTolerance, double yTolerance,

double zTolerance, double alphaTolerance,

double betaTolerance, double gammaTolerance)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 38

The tolerance is represented related to a position (x,y,z) and a

orientation (alpha, beta and gamma) specified in Euler Angles type 2.

A different type for the Euler angles can be specified according to
Appendix B (only when all the parameters are used).

 alPickPart

int alPickPart(

int robotId,

double toolStatus)

This function (reduced version of previous function) makes the robot

indicated in robotId parameter to pick the first part that accomplishes

the spatial relation between the active ToolFrame of the robot and any
operation frame of the part.

In any case, the active tool status will be changed to the toolStatus

parameter.
The effect of the function is that the found part will be attached to the
robot until the robot is forced to place the part.

 alPlacePart

int alPlacePart(

int robotId,

int partId,

double toolStatus)

This function makes the robot indicated in robotId parameter to place

the part indicate in partId. In addition, the active tool status will be

changed to the toolStatus parameter. The effect of the function is that

the part will be detached from the robot. An error is returned if the
specified part is not attached to the specified robot.

 alPlacePart

int alPlacePart(

int robotId,

double toolStatus)

This function (reduced version of previous function) makes the robot

indicated in robotId parameter to place the part attached to the active

tool frame of the robot. In addition, the active tool status will be changed

to the toolStatus parameter. The effect of the function is that the part

will be detached from the robot. An error is returned if there is no part
attached to the active tool frame of the specified robot.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 39

19. Functions for Auxiliary List of Figures

This set of functions mainly allows to manage an auxiliary list of figures. The
primitives and their parameters are defined on Virtual Robot Primitive Definition
document (VRPD). The location is always related to the World Frame.

 alAddFrame

 int alAddFrame(

double size,

int visibility,

int *figureId)

This function adds a coordinate system frame to the auxiliary list of
figures and returns a primitive identifier.

Parameters:

 size is the size to draw the frame.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

figureId figure identifier in the list, returned by the function.

 alAddPoint

 int alAddPoint(

double x, double y, double z,

COLORREF color,

int visibility,

int *figureId)

This function adds a point to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 x, y, z as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

figureId figure identifier in the list, returned by the function.

 alAddLine

 int alAddLine(

double x1, double y1, double z1,

double x2, double y2, double z2,

COLORREF color,

int visibility,

int *figureId)

This function adds a line to the auxiliary list of figures and returns a
primitive identifier.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 40

Parameters:

 x1, y1, z1, x2, y2, z2 as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

figureId figure identifier in the list, returned by the function.

 alAddDisk

 int alAddDisk(

double mainRadius,

double minorRadius,

double angle,

COLORREF color,

int visibility,

int *figureId)

This function adds a disk to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 mainRadius, minorRadius, angle as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddTriangle

 int alAddTriangle(

double x1, double y1, double z1,

double x2, double y2, double z2,

double x3, double y3, double z3,

COLORREF color,

int visibility,

int *figureId)

This function adds a triangle to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 x1,y1,z1,...,x3,y3,z3 as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 41

 alAdd3dFace

 int alAdd3dFace(

double x1, double y1, double z1,

double x2, double y2, double z2,

double x3, double y3, double z3,

double x4, double y4, double z4,

COLORREF color,

int visibility,

int *figureId)

This function adds a 3d face to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 x1,y1,z1,...,x4,y4,z4 as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddBox

 int alAddBox(

double length,

double width,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a box to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 length,width, height as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddPyramid

 int alAddPyramid(

double length,

double baseWidth,

double topWidth,

double height,

COLORREF color,

int visibility,

int *figureId)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 42

This function adds a pyramid to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

length,baseWidth,topWidth,height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddTriangularPyramid

 int alAddTriangularPyramid(

double baseEdge,

double topEdge,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a triangular pyramid to the auxiliary list of figures and
returns a primitive identifier.

 Parameters:

baseEdge, topEdge, height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddTent

 int alAddTent(

double baseLength,

double baseWidth,

double topLength,

double topWidth,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds tent a to the auxiliary list of figures and returns a
primitive identifier.

 Parameters:
baseLength, baseWidth, topLength, topWidth,

height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 43

 alAddWedge

 int alAddWedge(

double baseLength,

double width,

double topLength,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a wedge to the auxiliary list of figures and returns a
primitive identifier.

 Parameters:

baseLength,width,topLength,height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddCone

 int alAddCone(

double baseRadius,

double topRadius,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a cone to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 baseRadius, topRadius, height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddTube

 int alAddTube(

double mainRadius,

double minorRadius,

double angle,

double height,

COLORREF color,

int visibility,

int *figureId)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 44

This function adds a tube to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

mainRadius, minorRadius, angle, height as defined in

VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddSphere

int alAddSphere(

double radius,

COLORREF color,

int visibility,

int *figureId)

This function adds a sphere to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 radius as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddDome

 int alAddDome(

double baseRadius,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a dome to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 baseRadius, height as defined in VRPD.

 color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 45

 alAddTorus

 int alAddTorus(

double mainRadius,

double minorRadius,

COLORREF color,

int visibility,

int *figureId)

This function adds a torus to the auxiliary list of figures and returns a
primitive identifier.

Parameters:

 mainRadius,minorRadius as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddConeSphere

 int alAddConeSphere(

double baseRadius,

double topRadius,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a conesphere to the auxiliary list of figures and returns
a primitive identifier.

Parameters:

baseRadius, topRadius, height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddConeTwoSpheres

 int alAddConeTwoSpheres(

double baseRadius,

double topRadius,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a conetwospheres to the auxiliary list of figures and
returns a primitive identifier.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 46

 Parameters:

baseRadius, topRadius, height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddTentCylinder

 int alAddTentCylinder(

double width,

double baseLength,

double topLength,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a tentcylinder to the auxiliary list of figures and returns
a primitive identifier.

 Parameters:

width,baseLength,topLength,height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

 alAddTentTwoCylinders

 int alAddTentTwoCylinders(

double width,

double baseLength,

double topLength,

double height,

COLORREF color,

int visibility,

int *figureId)

This function adds a tenttwocylinders to the auxiliary list of figures and
returns a primitive identifier.

 Parameters:

width,baseLength,topLength,height as defined in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 figureId figure identifier in the list, returned by the function.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 47

 alAddOBFFile

int alAddOBFFile(

STRING obfFileName,

int visibility,

int *lastId)

This function adds the figures defined in an OBF file to the auxiliary list of
figures and returns the primitive identifier of the last figure. The file can
contain any kind of primitives.

 Parameters:

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 lastId is last figure identifier in the list, returned by the function.

 alAddPAFFile

int alAddPAFFile(

STRING pafFileName,

int visibility,

int *lastId)

This function adds the figures defined in a PAF file to the auxiliary list of
figures and returns the primitive identifier of the last figure. The file can
contain any kind of primitives. The operation frames of the part become
frame figures in the auxiliary list of figures.

 Parameters:

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 lastId is last figure identifier in the list, returned by the function.

 alAddVDAFile

 int alAddVDAFile(

STRING vdaFileName,

int thickness,

int curveSections,

int surfaceSections,

COLORREF color,

int visibility,

int *lastId)

This function adds the figures defined in a VDA file to the auxiliary list of
figures and returns the primitive identifier of the last figure. The file can
contain surfaces, curves, circular arcs and points made with
VDA_CURVE, VDA_SURF, DISK and 3DPOINT primitives.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 48

 Parameters:

thickness, curveSections, surfaceSections as defined

in VRPD.

color is the color of the primitive in RGB scale.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 lastId is last figure identifier in the list, returned by the function.

 alGetFigureDimensions

int alGetFigureDimensions(

int figureId,

int *figureType,

double figureDims[12])

This function gives the figure type in figureType and the figure

dimensions in figureDims of the figure specified in figureId. This

function cannot be used with any of the figures created with a VDA file
(an error is returned). If the figure does not exists, an error is returned.
The figure type and the dimensions are as shown in the following table:

FigureType

(defined with constant

FIGURE_TYPE_*)

figureDims[.]

0 1 2 3 4 5 6 7 8 9 10 11

FRAME size
3DPOINT x y z
LINE x1 y1 z1 x2 y2 z2
DISK mainradius minorradius angle
TRIANGLE x1 y1 z1 x2 y2 z2 x3 y3 z3
3DFACE x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4
BOX length width height
PYRAMID length basewidth topwidth height
TRIANGULAR_PYRAMID baseedge topedge height
TENT baselength basewidth toplength topwidth height
WEDGE baselength width toplength height
CONE baseradius topradius height
TUBE mainradius minorradius angle height
SPHERE radius
DOME baseradius height
TORUS mainradius minorradius
CONE_SPHERE baseradius topradius height
CONE_TWO_SPHERES baseradius topradius height
TENT_CYLINDER width baselength toplength height
TENT_TWO_CYLINDERS width baselength toplength height

 alSetFigureDimensions

int alSetFigureDimensions(

int figureId,

double figureDims[12])

This function sets the figure dimensions of the figure specified in

figureId to the values specified in figureDims. This function cannot

be used with any of the figures created with a VDA file (an error is
returned). If the figure does not exists, an error is returned. The figure

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 49

dimensions according to the figure type are as shown in the previous
table.

 alDelFigure

 int alDelFigure(

int figureId)

This function deletes a figure of the auxiliary list of figures.

Parameter:

 figureId is the figure identifier in the list.

 alDelFigureList

int alDelFigureList()

This function deletes all the figures of the auxiliary list of figures.

Parameter:
 No parameter is required.

 alInitFigureTransformation

 int alInitFigureTransformation(

int figureId)

This function initializes the transformation of a figure.

Parameter:

 figureId is the figure identifier in the list.

 alGetFigureTransformation

 int alGetFigureTransformation(

int figureId,

double transformation[4][4])

This function obtains the transformation matrix of a figure.

Parameters:

 figureId is the figure identifier in the list.

 transformation is the 4x4 transformation matrix.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 50

 alSetFigureTransformation

 int alSetFigureTransformation(

int figureId,

double transformation[4][4])

This function applies a transformation matrix to a figure.

Parameters:

 figureId is the figure identifier in the list.

transformation is a 4x4 Homogenous Transformation Matrix.

Options:
 The location can be managed as an array according to Appendix A.
 A different type for the Euler angles can be specified according to

Appendix B.
 The location can also be managed as a transformation matrix,

according to Appendix C.

 alApplyFigureOperation

 int alApplyFigureOperation(

int figureId,

int kind,

int axis,

double value)

This function applies a basic transformation to a figure.

Parameters:

 figureId is the figure identifier in the list.

 kind is the kind of transformation to add in the list:

TRANSLATION transformation of translation

ROTATION transformation of rotation

 axis is the axis on which the transformation must be applied:

X_AXIS, Y_AXIS , Z_AXIS X,Y,Z axis of global frame

U_AXIS, V_AXIS , W_AXIS U,V,W axis of local frame

value is the value of the transformation (in millimeters or

 degrees).

 alGetFigureVisibility

int alGetFigureVisibility(

int figureId,

int *visibility)

This function gives on visibility the visibility state for the figure

indicated on figureId.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 51

 Parameters:

 figureId is the figure identifier in the auxiliary list.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 alSetFigureVisibility

int alSetFigureVisibility(

int figureId,

int visibility)

This function sets the visibility state of a given figure in the auxiliary list of
figures. Only the visible figures will be drawn.

 Parameters:

 figureId is the figure identifier in the list.

visibility is the figure visibility state (VISIBLE, INVISIBLE)

 alGetFigurecolor

 int alGetFigurecolor(

int figureId,

COLORREF *color)

This function gives the color of a figure in the auxiliary list of figures.

Parameters:

 figureId is the figure identifier in the list.

 color returns the color of the primitive in RGB scale.

 alSetFigurecolor

 int alSetFigurecolor(

int figureId,

COLORREF color)

This function sets the color of a given figure to an RGB value.

Parameters:

 figureId is the figure identifier in the auxiliary list of figures.

 color is the color in RGB scale.

 alGetFigureRenderMode

 int alGetFigureRenderMode(

int figureId,

int *renderMode)

This function obtains the render mode of a figure.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 52

Parameters:

 figureId is the figure identifier in the list.

renderMode is the render mode (WIRED, SHADE or HIDDEN).

 alSetFigureRenderMode

 int alSetFigureRenderMode(

int figureId,

int renderMode)

This function defines the render mode of a figure. Independently of the
render configuration, the figure will be drawn always in this render mode.

Parameters:

 figureId is the figure identifier in the list.

renderMode is the render mode (WIRED, SHADE or HIDDEN).

 alGetNumberOfFigures

int alGetNumberOfFigures(int *numberOfFigures)

This function returns the number of figures in the auxiliary list of figures.

 alSetFigureEffects

int alSetFigureEffects(

int figureId,

bool blend, int srcFnc, int dstFnc,

STRING textureFile, int envFnc, STRING maskFile)

This function sets the visual effects of a figure in the auxiliary list of

figures specified with figureId. The parameter meaning is as follow:

 If blend is true, the figure becomes a transparent figure, applying

srcFnc and dstFnc as source and destination functions as

transparency parameters. If blend is false, the figure becomes

opaque. The transparency parameters srcFnc and dstFnc can be:
GL_ZERO, GL_DST_COLOR, GL_SRC_COLOR,

GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_SRC_COLOR,

GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_DST_ALPHA,

GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA_SATURATE

 The textureFile parameter, if not empty, must be a BMP file with

path related to VRS path (spaces must be avoided in file name and
path) of a texture applied to the figure when the figure is displayed in
RENDERED mode. The texture file will be applied to every face of the
primitive. This function cannot be applied to the torus. It is highly
recommended to have all textures in path Models\Textures.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 53

 The envFnc parameters gives the texture application mode. When a

texture file is specified for a primitive, the texture application mode can
be specified with one of the following values:
GL_DECAL, GL_MODULATE, GL_BLEND, GL_REPLACE

 The maskFile parameter, if not empty, must be a monochrome BMP

file with path related to VRS path (spaces must be avoided in file
name and path) of a mask. When the primitive is displayed in
RENDERED mode with a texture file applied, this mask file will be
applied as a mask. This function cannot be applied to the torus. It is
highly recommended to have all masks in path Models\Textures.

The parameters used are as defined in OPEN-GL. Please refer to
OPEN-GL reference books for more information.

 alMoveFiguresToObject

int alGetFigureEffects(

int figureId,

bool *blend, int *srcFnc, int *dstFnc,

STRING textureFile, int *envFnc, STRING maskFile)

This function obtains the visual effects of a figure in the auxiliary list of

figures specified with figureId. The parameter meaning is that of

previous function.

 alMoveFiguresToObject

int alMoveFiguresToObject(

STRING objectName,

int *objectId)

This function moves the auxiliary list of figures to the environment as a

new object with the name specified in objectName. The frames in the

auxiliary list of figures will not be moved. The auxiliary list of figures
becomes empty. The object identifier is returned on the last parameter.

 alCopyFiguresToObject

int alCopyFiguresToObject(

STRING objectName,

int *objectId)

This function copies the auxiliary list of figures to the environment as a

new object with the name specified in objectName. The frames in the

auxiliary list of figures will not be copied. The auxiliary list of figures is not
modified. The object identifier is returned on the last parameter.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 54

 alMoveFiguresFromObject

int alMoveFiguresFromObject(int objectId)

This function moves the primitives in the object of the environment
specified in the parameter to the auxiliary list of figures. All the previous
figures in the auxiliary list are not modified. The object is deleted. An
error is returned if there is no object with this identifier.

 alCopyFiguresFromObject

int alCopyFiguresFromObject(int objectId)

This function copies the primitives in the object of the environment
specified in the parameter to the auxiliary list of figures. All the previous
figures in the auxiliary list are not modified. The object is not modified. An
error is returned if there is no object with this identifier.

 alMoveFiguresToPart

int alMoveFiguresToPart(STRING partName, int *partId)

This function moves the auxiliary list of figures to the environment as a

new part with the name specified in partName. All the frames in the

auxiliary list of figures will be copied as operation frames of the part. If
there is no frame on the list of figures, an operation frame is created with
identity transformation. The auxiliary list of figures becomes empty. The
part identifier is returned on the last parameter.

 alCopyFiguresToPart

int alCopyFiguresToPart(STRING partName, int *partId)

This function copies the auxiliary list of figures to the environment as a

new part with the name specified in partName. All the frames in the

auxiliary list of figures will be copied as operation frames of the part. If
there is no frame on the list of figures, an operation frame is created with
identity transformation. The auxiliary list of figures is not modified. The
part identifier is returned on the last parameter.

 alMoveFiguresFromPart

int alMoveFiguresFromPart(int partId)

This function moves the primitives in the part of the environment
specified in the parameter to the auxiliary list of figures. All the previous
figures in the auxiliary list of figures are not modified. The operation
frames of the part become frame figures in the auxiliary list of figures.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 55

The part is deleted. An error is returned if there is no part with this
identifier.

 alCopyFiguresFromPart

int alCopyFiguresFromPart(int partId)

This function copies the primitives in the part of the environment
specified in the parameter to the auxiliary list of figures. All the previous
figures in the list are not modified. The operation frames of the part
become frame figures in the auxiliary list of figures. The part is not
modified. An error is returned if there is no part with this identifier.

 alSaveAsObject

int alSaveAsObject(STRING obfFileName)

This function saves the auxiliary list of figures as an object file (OBF). An
error is returned if there is no figure in the auxiliary list of figures. The file
name starts from VR-Path.

 alSaveAsPart

int alSaveAsPart(STRING pafFileName)

This function saves the auxiliary list of figures as a part file (PAF). An
error is returned if there is no figure in the auxiliary list of figures. The file
name starts from VR-Path.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 56

20. Functions for Display

This set of functions mainly allows the manage of different aspect for display.
Usually the display is controlled by means of VRS options in such way that
while the user application is running, the user can manage the display from the
available options of VRS. With the functions explained in this section, the user
application can take the control of the display and manage some parameters for

this purpose. This will be possible only if the function alGetDisplayControl

has been successfully executed. The viewport parameter specifies the

viewport used for the function (possible values are defined with constants

FIRST_VIEWPORT, …, FOURTH_VIEWPORT).

The functions are:

 alGetDisplayControl

int alGetDisplayControl(

int viewport)

This function gives the display control to the user application by means of
VREAL functions. The following actions are executed on VRS before the
display control is given to the VREAL library:
 The display is configured with only one window
 The display is initialized in perspective and shaded display.
 The rest of parameters (point of view, reference point, …) are decided

by VRS
 The following display options become disabled on VRS:

o 1 Window, 2 Horizontal Windows, 2 Vertical Windows, 4
Windows, Maximize

o Wired, Shaded
o Zoom, Scroll, Point of View, Reference Point
o Perspective (Front, Back, Left, Right, Up, Down, Perspective)

 alFreeDisplayControl

int alFreeDisplayControl(

int viewport)

This function gives back the display control to VRS and the user can
manage display by means of the available options on the menus which
are enabled again. None of the following functions will produce any
action after this function is called.

 alGetCameraPosition

int alGetCameraPosition(

int viewport,

double *x, double *y, double *z)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 57

This function returns in x,y,z the camera position, i.e. the point of view

from where the image is taken. The position is related to the world frame.

 alSetCameraPosition

int alSetCameraPosition(

int viewport,

double x, double y, double z)

This function defines the camera position in x,y,z, i.e. the point of view

from where the image is taken. The position is related to the world frame.
An error is returned if the camera is attached to a Tool Frame.

 alGetPolarCameraPosition

int alGetPolarCameraPosition(

int viewport,

double *tecta, double *fi, double *ro)

This function returns in tecta,fi,ro the polar coordinates of the

camera position, i.e. the point of view from where the image is taken.

tecta is the longitude, fi is the latitude and ro is the distance between

the point of view and the reference point, having a zoom effect. The polar
coordinates are related to the reference point.

 alSetPolarCameraPosition

int alSetPolarCameraPosition(

int viewport,

double tecta, double fi, double ro)

This function defines the polar coordinates of the camera position in

tecta,fi,ro, i.e. the point of view from where the image is taken.

tecta is the longitude, fi is the latitude and ro is the distance between

the point of view and the reference point, having a zoom effect. The polar
coordinates are related to the reference point. An error is returned if the
camera is attached to a Tool Frame.

 alGetPointRef

int alGetPointRef(

int viewport,

double *x, double *y, double *z)

This function returns in x,y,z the coordinates of the reference point, i.e.

where the camera is looking at. The position is related to the world frame.

 alSetPointRef

int alSetPointRef(

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 58

int viewport,

double x, double y, double z)

This function defines the coordinates of the reference point in x,y,z, i.e.

where the camera is looking at. An error is returned if the camera is
attached to a Tool Frame. The position is related to the world frame.

 alGetCameraParameters

int alGetCameraParameters(

int viewport,

int *nearPlane,

int *farPlane,

double *fov)

This function returns the following camera parameters:

 nearPlane is the near plane of the camera model

 farPlane is the far plane of the camera model

 fov is the field of view angle, in degrees

 alSetCameraParameters

int alSetCameraParameters(

int viewport,

int nearPlane,

int farPlane,

double fov)

This function defines the following camera parameters:

 nearPlane is the near plane of the camera model

 farPlane is the far plane of the camera model

 fov is the field of view angle, in degrees

 alGetRenderConfig

int alGetRenderConfig(

int viewport,

int *renderKind)

This function returns the current render configuration, which can be

WIRED, SHADED, or HIDDEN.

 alSetRenderConfig

int alSetRenderConfig(

int viewport,

int renderKind)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 59

This function defines the render configuration, which can be WIRED,

SHADED, or HIDDEN.

 alAttachCamera2ToolFrame

int alAttachCamera2ToolFrame(

int viewport,

int robotId,

int toolFrameId)

This function attaches the camera to the ToolFrame indicated on the
second parameter of the robot indicated on the first parameter. An error
is returned if the ToolFrame does not exist. The optic axis of the camera
is assigned to the Z-axis of the ToolFrame and the vertical axis of the
camera will be the Y-axis of the ToolFrame. A depth similar to far plane is
assigned.

Option:
A depth parameter (to indicate distance from camera position to
reference point) can be defined as fourth parameter with the following
interface (if not specified, the default depth value is the far plane):

int alAttachCamera2ToolFrame(

int viewport,

int robotId,

int toolFrameId,

double depth)

 alFreeCamera

int alFreeCamera(

int viewport)

This function frees the camera if it is attached. The camera will be
restored as it was before attached.

 alGetCameraDepth

int alGetCameraDepth(

int viewport,

double *depth)

This function gives back the camera depth on the parameter. depth is

the distance from camera position to reference point. This parameter is
only used when the camera is attached. Its default value is the far plane.

 alSetCameraDepth

int alSetCameraDepth(

int viewport,

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 60

double depth)

This function defines the camera depth on the parameter. depth is the

distance from camera position to reference point. This parameter is only
used when the camera is attached. Its default value is the far plane.

 alDisplayDynamicInfo

int alDisplayDynamicInfo (

int dynamicInfoVisible)

This function makes visible the dynamic info in VRS when the parameter

is VISIBLE and invisible when the parameter is INVISIBLE.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 61

21. Distance Functions

This set of functions is designed to compute distances to elements in VRS.

The functions are:

 alDistanceToObject

int alDistanceToObject(

int objectId,

double location[6],

int *interfer,

double *distance)

This function computes the distance to the object specified in objectId

related to Z-axis of a location, returning the interference state and the
distance. Possible result cases are specified in the following table:

Case interfer value distance value

There is no interference between
Z-axis of location frame and object

NOT_INTERFER 0

The location frame is inside the object IS_INSIDE 0

The object is in the negative direction
of Z-axis of location frame

IS_IN_BACK 0

The object is in the positive direction
of Z-axis of location frame

IS_IN_FRONT distance value

 alDistanceToPart

int alDistanceToPart(

int partId,

double location[6],

int *interfer,

double *distance)

This function computes the distance to the part specified in partId related

to Z-axis of a location, returning the interference state and the distance.
Possible result cases are specified in the following table:

Case interfer value distance value

There is no interference between
Z-axis of location frame and part

NOT_INTERFER 0

The location frame is inside the part IS_INSIDE 0

The part is in the negative direction of
Z-axis of location frame

IS_IN_BACK 0

The part is in the positive direction of
Z-axis of location frame

IS_IN_FRONT distance value

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 62

 alDistanceToRobot

int alDistanceToRobot(

int robotId,

double location[6],

int *interfer,

double *distance)

This function computes the distance to the robot specified in robotId

related to Z-axis of a location, returning the interference state and the
distance. Possible result cases are specified in the following table:

Case interfer value distance value

There is no interference between
Z-axis of location frame and robot

NOT_INTERFER 0

The location frame is inside the robot IS_INSIDE 0

The robot is in the negative direction
of Z-axis of location frame

IS_IN_BACK 0

The robot is in the positive direction of
Z-axis of location frame

IS_IN_FRONT distance value

 alGetClosestObject

int alGetClosestObject(

double location[6],

int *objectId,

double *distance)

This function computes the closest object related to Z-axis of a location.
Possible result cases are specified in the following table:

Case objectId value distance value

No object is detected NOTHING 0

The location frame is inside an object objectId 0

At least an object is detected and the
closest one is computed

objectId distance value

 alGetClosestPart

int alGetClosestPart(

double location[6],

int *partId,

double *distance)

This function computes the closest part related to Z-axis of a location.
Possible result cases are specified in the following table:

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 63

Case partId value distance value

No part is detected NOTHING 0

The location frame is inside a part partId 0

At least a part is detected and the
closest one is computed

partId distance value

 alGetClosestRobot

int alGetClosestRobot(

double location[6],

int *robotId,

double *distance)

This function computes the closest robot related to Z-axis of a location.
Possible result cases are specified in the following table:

Case robotId value distance value

No robot is detected NOTHING 0

The location frame is inside a robot robotId 0

At least a robot is detected and the
closest one is computed

robotId distance value

Options:
A robot can be avoided to consider detection with an optional parameter, its

identifier specified in robotToAvoid, with the following function interface:
int alGetClosestRobot(double location[6], int *robotId,

 double *distance, int robotToAvoid)

 alGetClosestElement

int alGetClosestElement(

double location[6],

int *elementId,

int *elementType,

double *distance)

This function computes the closest element (object, part or robot) related to
Z-axis of a location. Possible result cases are specified in the following table:

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 64

Case elementId

value

elementType

value

distance

value

No element is detected NOTHING NOTHING 0

The location frame is inside an
object

objectId IT_IS_OBJECT 0

The location frame is inside a
part

partId IT_IS_PART 0

The location frame is inside a
robot

robotId IT_IS_ROBOT 0

At least an element is
detected and the closest one
computed is an object

objectId IT_IS_OBJECT distance
value

At least an element is
detected and the closest one
computed is a part

partId IT_IS_PART distance
value

At least an element is
detected and the closest one
computed is a robot

robotId IT_IS_ROBOT distance
value

Options:
A robot can be avoided to consider detection with an optional parameter, its

identifier specified in robotToAvoid, with the following function interface:
int alGetClosestElement(double location[6],

int *elementId, int *elementType,

double *distance, int robotToAvoid)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 65

22. Video Functions

This set of functions is designed to record videos1.

The functions are:

 alVideoStart

int alVideoStart(

STRING fileName)

This function specifies the file name where a video is going to be
recorded in an uncompressed AVI format. The function does not start
video recording.

 alVideoRecord

int alVideoRecord()

This function starts the video recording (or continue video recording if
paused).

 alVideoPause

int alVideoPause()

This function makes a pause on video recording.

 alVideoEnd

int alVideoEnd()

This function ends video recording and closes the video file.

 alGetImage

int alGetImage(

int sizeX, int sizeY,

char *image)

This function returns an image of size sizeX x sizeY specified as a

matrix.

1
 Only for Windows 95/98/ME

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 66

23. Collision Check Functions

This set of functions is designed for collision check.

The functions are:

 alStartCollisionCheck

int alStartCollisionCheck(int period)

This function starts the collision check module with a period (in
milliseconds). Collisions are checked between every robot and every
object and part of the environment. Only those robot links, objects and
parts defined with envelops are considered (see VRFFD). If a collision is
detected, the background color is set to red color. When the collision
check is activated, neither a robot nor the environment can be loaded or
closed.

 alEndCollisionCheck

int alEndCollisionCheck()

This function ends the collision check module.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 67

24. VREAL.INI File

The VREAL.INI file allows the configuration of the communication between VRS
and the user’s application. This file must be in the windows main directory.

The content of the file is as follow:

[GENERAL]
TimeOut=5
LoadTimeOut=40
;Communication Timeout in seconds

The TimeOut field means the timeout in seconds for application communication.
The LoadTimeOut fields means the timeout in seconds for the load instructions.
The second timeout usually will be greater than general timeout.

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 68

Appendix A. Location Over-Definition as an Array

In most of the functions where a location is required, six parameters are used.
The six parameters can be grouped in a 6-component array. The definition of
the function can be any of the following:

With six parameters With array
...,

double x,

double y,

double z,

double alpha,

double beta,

double gamma,

...

...,

double location[6],

...

...,

double *x,

double *y,

double *z,

double *alpha,

double *beta,

double *gamma,

...

...,

double location[6],

...

The equivalence is given by the order, that is:
location[0] is x location[1] is y location[2] is z
location[3] is alpha location[4] is beta location[5] is gamma

This option is available on the following functions:

alGetRobotFrame alSetRobotLocation
alPlaceRobot alApproxToLocation
alGetEnvironmentFrame alGetObjectLocation
alPlaceEnvironment alSetObjectLocation
alGetRobotLocation alGetPartLocation
alMoveRobot alSetPartLocation

alMove alGetPartOperationFrame

alGetFigureTransformation alSetFigureTransformation

As an example, consider the first function, alGetRobotFrame, which can be

called using any of the two following interfaces:
 int alGetRobotFrame(int robotId, double *x, double *y, double *z,

double *alpha, double *beta, double *gamma)

 int alGetRobotFrame(int robotId, double location[6])

Please, note that the rest of the parameters must follow the location, as in

alApproxToLocation:
int alApproxToLocation(int robotId, location[6],

int linearMovement, int frame, double xDistance,

double yDistance, double zDistance)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 69

Appendix B. Euler Angles Type Selection

In any function where an orientation is specified with Euler angles the default
type is 2 (also called ZYZ), that is, with the following rotations:

 Rotation of alpha angle related to Z axis
 Rotation of beta angle related to V axis
 Rotation of gamma angle related to W axis

A different Euler angle type can be specified with a new parameter on the

function. The parameter eulerType is used and can take the following values

(from Constant Definition section):

 EULER_ANGLES_TYPE_1 for Euler angles type 1 (ZXZ: alpha for Z, beta

for U, gamma for W)

 EULER_ANGLES_TYPE_2 for Euler angles type 2

 EULER_ANGLES_TYPE_3 for Euler angles type 3 (XYZ: alpha for X, beta

for Y, gamma for Z)

This option is available on the following functions:

alGetRobotFrame alSetRobotLocation
alPlaceRobot alApproxToLocation
alGetEnvironmentFrame alGetObjectLocation
alPlaceEnvironment alSetObjectLocation
alGetRobotLocation alGetPartLocation
alMoveRobot alSetPartLocation

alMove alGetPartOperationFrame

alGetFigureTransformation alSetFigureTransformation

As an example, consider the first function, alGetRobotFrame, which can be

called using this new parameter for any of the two available interfaces:
 int alGetRobotFrame(int robotId, double *x, double *y, double *z,

double *alpha, double *beta, double *gamma, int eulerType)

 int alGetRobotFrame(int robotId, double location[6], int eulerType)

A special function for this option is alPickPart. For this function, a special

orientation tolerance can be defined with optional parameters. Only when the
six parameters are specified, a different Euler Angles Type can be used. In this
case the function interface becomes according to:

int alPickPart(

int robotId, int partId, int opFrameId, double toolStatus,

int checkOpFrame, double xTolerance, double yTolerance,

double zTolerance, double alphaTolerance, double betaTolerance,

double gammaTolerance, int eulerType)

VirtualRobot robotica.isa.upv.es

Virtual Robot External Access Library - 70

Appendix C. Location Over-Definition as Transformation

In most of the functions where a location is required, six parameters are used
(even grouped as commented on Appendix A), representing three translation
values for position and three angle values for orientation. An equivalent form to
represent a location is by means of a 4x4 transformation matrix. The definition
of the function can be any of the following:

With six parameters With Transformation Matrix
...,

double x,

double y,

double z,

double alpha,

double beta,

double gamma,

...

...,

double transformation[4][4],

...

...,

double *x,

double *y,

double *z,

double *alpha,

double *beta,

double *gamma,

...

...,

double transformation[4][4],

...

This option is available on the following functions:

alGetRobotFrame alSetRobotLocation
alPlaceRobot alApproxToLocation
alGetEnvironmentFrame alGetObjectLocation
alPlaceEnvironment alSetObjectLocation
alGetRobotLocation alGetPartLocation
alMoveRobot alSetPartLocation

alMove alGetPartOperationFrame

alGetFigureTransformation alSetFigureTransformation

As an example, consider the first function, alGetRobotFrame, which can be

called using any of the two following interfaces:
 int alGetRobotFrame(int robotId, double *x, double *y, double *z,

double *alpha, double *beta, double *gamma)

 int alGetRobotFrame(int robotId, double location[6])

 int alGetRobotFrame(int robotId, double transformation[4][4])

Please, note that the rest of the parameters must follow the location, as in

alApproxToLocation:
int alApproxToLocation(int robotId, transformation[4][4],

int linearMovement, int frame, double xDistance,

double yDistance, double zDistance)

